ПАРАМЕТРИЧЕСКАЯ ИДЕНТИФИКАЦИЯ ДИНАМИЧЕСКОЙ МОДЕЛИ ОШИБОК ВОЛНОВОГО ТВЕРДОТЕЛЬНОГО ГИРОСКОПА В РЕЖИМЕ РЕАЛЬНОГО ВРЕМЕНИ

А.В. Чернодаров

Московский авиационный институт (Нацональный исследовательский университет) Научно-производственное объединение «НаукаСофт» Россия, 129085, Москва, ул. Годовикова, 9 Е-mail: chernod@mail.ru

С.Е. Переляев

Институт проблем механики им. А.Ю. Ишлинского РАН Россия, 112526, Москва, пр-т Вернадского, 101 E-mail: Pers2030@yandex.ru

Ключевые слова: бесплатформенная инерциальная навигационная система, динамическая модель ошибки датчика, волновой твердотельный гироскоп, корреляционная функция ошибки, параметрическая идентификация модели ошибки.

Аннотация: Рассматривается технология параметрической идентификации динамических моделей ошибок чувствительных элементов (ЧЭ) инерциальных навигационных систем. Такая технология основана на вычислении корреляционной функции для оценок ошибок ЧЭ и ее использовании для определения коэффициентов сноса и диффузии. Результаты идентификации представлены для модели ошибок волнового твердотельного гироскопа (ВТГ). Показано влияние неточности задания параметров в модели дрейфа ВТГ на точностные характеристики инерциальной курсовертикали.

1. Введение

Современное состояние бесплатформенных инерциальных навигационных систем (БИНС) характеризуется применением чувствительных элементов (ЧЭ) различного принципа действия. Выбор ЧЭ во многом зависит от условий эксплуатации БИНС. В трудных условиях эксплуатации БИНС в качестве ЧЭ используют волновые твердотельные гироскопы (ВТГ) [1,2]. С другой стороны, такие условия должны учитываться при комплексном совершенствовании как конструктивного, так и математического обеспечения БИНС на базе ВТГ. Такое совершенствование определяется, в том числе, качеством калибровки ВТГ, учитывающей их конструктивные дефекты.

Традиционно калибровка ВТГ связана с оценкой их систематических ошибок. Такие ошибки отражают статическую модель, параметры которой не изменяются во времени в процессе эксплуатации. Известный метод Аллана [3] позволяет оценить стабильность дисперсий стохастических ошибок ВТГ. Однако указанный метод не дает рекомендаций по использованию оценок статистических параметров в уравнениях,

характеризующих динамику изменения ошибок ВТГ во времени. Такие уравнения используются для прогнозирования оценок ошибок ВТГ как в автономных, так и в интегрированных режимах функционирования БИНС. Поэтому кроме процедур заводской калибровки возникает необходимость настройки параметров моделей ошибок и шумов ВТГ. В работе [4] показано, что такая настройка может быть выполнена на основе корреляционной обработки зарегистрированных оценок ошибок ВТГ. Однако в процессе эксплуатации БИНС происходит изменение характеристик ВТГ. Это обуславливает необходимость учета таких изменений в моделях ошибок ДПИ. Поэтому актуальной остается задача параметрической идентификация моделей ошибок ВТГ в режиме реального времени.

Цель работы – повышение точностных характеристик БИНС на базе ВТГ с учетом параметрической идентификацией динамических моделей ошибок в режиме реального времени.

Достижение поставленной цели опирается на применение обобщенного фильтра Калмана (ОФК) [5] для оценки ошибок ВТГ и параметрической идентификации их динамических моделей по внешним наблюдениям в процессе эксплуатации.

2. Параметрическая идентификация коэффициентов сноса и диффузии в модели ошибок ВТГ

При бортовой реализации моделей ошибок ЧЭ считается возможным приближенное [6] описание случайных дрейфов гироскопов Δω и смещений акселерометров Δа в виде марковского гауссовского процесса первого порядка

(1)
$$\Delta \dot{\omega} = -\alpha \Delta \omega + \xi \sigma \sqrt{2\alpha}$$

с экспоненциальной корреляционной функцией

(2)
$$R(t) = \sigma^2 e^{-\alpha |t|},$$

где параметр $\alpha = 1/\tau$ называют коэффициентом сноса [7]; τ – время корреляции; t – время; σ – среднеквадратическое отклонение от истинного значения, которое в модели (1) называют еще коэффициентом диффузии [7]; $\xi \in N(0,1)$.

В соотношениях (1), (2) коэффициенты сноса α и диффузии σ являются параметрами, подлежащими идентификации.

Из соотношения (2) следует $R(0) = \sigma^2$. Поэтому задача идентификации сводится к определению параметра α в модели (2), который минимизирует квадратичную функцию

(3)
$$F(\alpha) = \sum_{j=0}^{N} [\hat{R}_{j} - \sigma^{2} e^{-\alpha \tau_{j}}]^{2} \to \min_{\alpha},$$

где \hat{R}_j статистическая корреляционная функция, вычисленная по зарегистрированным оценкам ошибок \hat{x}_j в процессе эксплуатации ИНС, а именно:

(4)
$$\widehat{R}_k = \frac{1}{N} \sum_{i=k+1}^{N+k} \widetilde{x}_i \widetilde{x}_{i-k};$$

$$\widetilde{x}_i = \widehat{x}_i - m_x; \ m_x = \frac{1}{N} \sum_{i=1}^N \widehat{x}_i; \ m_x = \frac{1}{N} \sum_{i=1}^N \widehat{x}_i; \ k = \overline{0, N};$$

N – число ретроспективных отсчетов сигнала ВТГ; $\tau_j = j\Delta t$; $\Delta t = t_i - t_{i-1}$; t_i – дискретные моменты времени.

Дифференцируя функцию (3) по α и приравнивая производную нулю, получаем (5) $\frac{\partial F(\alpha)}{\partial \alpha} = 2 [\sum_{j=0}^{N} \widehat{R}_j - \sum_{j=0}^{N} \sigma^2 e^{-\alpha \tau_j}) \sum_{j=0}^{N} \sigma^2 \tau_j e^{-\alpha \tau_j} = 0.$

Учитывая, что для ЧЭ 0 < α < 1 и второй сомножитель в уравнении (5) не влияет на решение, можно записать

(6)
$$\sum_{j=0}^{N} \widehat{R}_j = \sum_{j=0}^{N} \sigma^2 e^{-\alpha \tau_j}.$$

Оценка нормированной корреляционной функции имеет вид

(7) $\hat{r}_i = \hat{R}_i / \sigma^2$.

При $\hat{R}_i > 0$ уравнению (6) можно поставить в соответствие эквивалентное выражение, записанное в терминах функции натурального логарифма, а именно:

 $\sum_{i=0}^{N} \ln \hat{r}_i = -\alpha \sum_{i=0}^{N} \tau_i.$ (8)

Отсюда оценка $\hat{\alpha}$ параметра α будет иметь вид $\hat{\alpha} = -\sum_{j=0}^{N} \ln \hat{r}_j / \sum_{j=0}^{N} \tau_j.$

(9)

Возможности современных бортовых вычислителей позволяют реализовывать процедуры параметрической идентификации в режиме реального времени (РРВ). Алгоритм РРВ-идентификации можно представить в следующем виде.

Корреляционная обработка оценок, $k = \overline{0, N}$:

$$\widehat{R}_k = \frac{1}{N} \sum_{i=k+1}^{N+k} \widetilde{x}_i \, \widetilde{x}_{i-k}; \, d_k = d_{k-1} + \ln \frac{\widehat{R}_0}{\widehat{R}_k}; \, \tau_k = k \Delta t_i; \, c_k = c_{k-1} + \tau_k.$$

Идентификация параметров, k = N:

 $\sigma^2 = \widehat{R}_0; \ \alpha = d_N/c_N.$ Обновление цикла: $N := N + 1; \ \mathbf{k} := \mathbf{0}; \ c_0 = 0; \ d_0 = 0.$

Алгоритм идентификации включается в модуль прогноза оценок в структуре ОФК.

3. Анализ результатов исследований

В качестве объекта исследований рассматривался ВТГ [8], расположенный вертикально на стенде. Некоторые результаты обработки сигнала ВТГ представлены на рис. 1 и 2: на рис. 1 – ошибка ВТГ при определении вертикальной составляющей угловой скорости вращения Земли, на рис. 2 – нормированная корреляционная функция для ошибки ВТГ.

Рис. 2. Корреляционная функция для ошибки ВТГ

Анализ результатов корреляционной обработки оценок показал, что параметры идентификации в постобработке и в реальном времени практически совпадают.

Влияние неточности задания параметров модели ошибок ВТГ рассматривалось для одного канала инерциальной курсовертикали (ИКВ) [9].

При наблюдении вектора ошибок ИКВ $x(t) = [\Delta V \delta \Delta a \Delta \omega]^{T}$ по сигналам скорости $z_V(t) = V_{\rm ИКB}(t) - V_{\rm ДВИ}(t)$ параметры динамической модели имеют вид

где R – величина радиуса-вектора местоположения ИКВ; g – ускорение силы тяжести; δ – угловая ошибка определения вертикали; ΔV – ошибка счисления скорости; Δa – смещение сигнала акселерометра; $\Delta \omega$ - дрейф гироскопа; τ_a, τ_ω – время корреляции ошибок акселерометра и дрейфа гироскопа; σ_a, σ_ω – среднеквадратические значения ошибок акселерометра и гироскопа; ДВИ – датчик внешней информации; $\Delta(...)$ – символ ошибки. Частота формирования наблюдений 1Гц.

На рис. 3 и 4 представлены характерные результаты оценивания ошибок ИКВ, где показаны действительная $\Delta \delta = \delta - \hat{\delta}$ и среднеквадратическая $\sigma_{\delta} = \sqrt{P_{\Delta\delta}}$ ошибки определения вертикали ИНС δ ; $P_{\Delta\delta}$ - диагональный элемент ковариационной матрицы ошибок оценивания. Оценки, полученные ОФК без предварительной идентификации параметров $\hat{\alpha}, \hat{\sigma}^2$, показаны на рис. 3, а с идентификацией – на рис. 4.

График на рис. 4 отражает динамику изменения оценок, когда коэффициенты сноса $1/\tau$ и диффузии $\sigma\sqrt{2/\tau}$ в модели ошибок ВТГ (8) отличаются от полученных при идентификации на порядок.

Рис. 3. Ошибки определения вертикали без идентификации параметров дрейфа ВТГ

График на рис. 4 отражает динамику изменения оценок, когда коэффициенті за $1/\tau$ и диффузии $\sigma\sqrt{2/\tau}$ в модели ошибок ВТГ (8) отличаются от полученных при идентификации на порядок.

али Социали филографии Спортанить графии 1 Графии 2 Графии 3 Графии 4		The an acress cancers A Articler Actions, Physical Actions, Action and Action
	Mar in in in	12 Pagete
	Egenergeni (Perutyn	

Рис. 4. Ошибки определения вертикали с учетом идентификации параметров дрейфа BTT.

t

Можно видеть, что несоответствие модельных коэффициентов сноса и диффузии их реальным значениям существенно влияет на достоверность оценок ошибок. Особенно это проявляется в автономном режиме функционирования ИКВ, в том числе, между сеансами внешних наблюдений.

4. Заключение

При построении моделей ошибок инерциальных чувствительных элементов необходимо учитывать, как их детерминированные, так и случайные составляющие. Детерминированные составляющие определяются, как правило, при заводской стендовой калибровке ЧЭ. Случайные составляющие описываются с использованием коэффициентов сноса и диффузии, которые входят в динамические модели ошибок ЧЭ. Идентификация таких коэффициентов может быть выполнена по зарегистрированным данным как в процессе динамических испытаний [4], так и в режиме реального времени с использованием внешних по отношению к БИНС систем.

Список литературы

- 1. Журавлев В.Ф., Климов Д.М. Волновой твердотельный гироскоп. М.: Наука, 1985. 123 с.
- Лукьянов Д.П., Распопов В.Я., Филатов Ю.В. Прикладная теория гироскопов. С.Пб.: ОАО «Концерн «ЦНИИ «Электроприбор», 2015. 316 с.
- Siraja T.N. Comparison of Uncertainty Estimates: Allan Variance and Sample Variance // Measurement 3. Science Review. Vol. 1, No. 1, P. 25-28.
- Чернодаров А.В., Переляев С.Е. Корреляционная обработка сигналов и структурно-параметрическая 4. идентификация динамической модели ошибок волнового твердотельного гироскопа // XXX Санкт-Петербургская международная конференция по интегрированным навигационным системам. С.Пб: ОАО «Концерн «ЦНИИ «Электроприбор». 2023. С. 268 - 271.
- Maybeck P. Stochastic Models, Estimation and Control. New York: Academic Press, 1982. Vol. 2. 5
- Бабич О.А. Обработка информации в навигационных комплексах. М.: Машиностроение, 1991. 512 с. 6.
- Pugachev V. Stochastic Differential Systems. Analysis and Filtering. New York: John Wiley, 1987. 7.
- 8. Переляев C.E., Бодунов С.Б., Бодунов Б.П. Волновой твердотельный гироскоп авиационнокосмическоого применения навигационного класса точности // XXIX Санкт-

2 4

Петербургская международная конференция по интегрированным навигационным системам. С.Пб.: ОАО «Концерн «ЦНИИ «Электроприбор». 2022. С. 185-188.

 Степанов О.А. Основы теории оценивания с приложениями к задачам обработки навигационной информации. Часть1. Введение в теорию оценивания / Изд. 3-е. СПб.: ОАО «Концерн «ЦНИИ «Электроприбор», 2017. 509 с.