ОБ УСТОЙЧИВОСТИ СИСТЕМЫ АЛГОРИТМА "SUPER-TWISTING" ПРИ ВАРИАЦИИ ПАРАМЕТРА НЕЛИНЕЙНОСТИ

А.О. Высоцкий

Московский государственный университет имени М.В. Ломоносова, факультет ВМК Россия, 119991 ГСП-1 Москва, Ленинские горы, МГУ имени М.В. Ломоносова, 2-й учебный корпус, факультет ВМК

E-mail: vysotskiial@gmail.com

Ключевые слова: скользящие режимы высших порядков, нелинейные и разрывные обратные связи.

Аннотация: В данной работе классический алгоритм скольжения второго порядка ("super-twisting") рассматривается при вариации параметра нелинейности. Целью работы являлось изучение свойства устойчивости этой системы. Для решения задачи траектории системы обобщенного алгоритма "super-twisting" оценивались траекториями систем параметром нелинейности, равным 1/2. Получены необходимые и достаточные условия устойчивости, а также оценки на величину области асимптотической устойчивости системы.

1. Введение. Постановка задачи

В современной теории управления большую важность имеют задачи управления для систем с неопределенностью (с неизвестными неизмеряемыми входными воздействиями). Одной из таких задач является задача стабилизации. Популярным подходом к решению этой задачи является использование скользящих режимов высших порядков [1–3]. Одним из наиболее популярных алгоритмов управления, используемых для достижения робастной по отношению к внешним возмущениям устойчивости динамических систем является алгоритм «супер-скручивания» [2, 4].

Традиционно, при изучении данного алгоритма, варьируются только множители перед нелинейным и разрывным слагаемыми, значении же степени нелинейного слагаемого всегда полагается одинаковым и равным 1/2. Для этого случая известны необходимые и достаточные условия устойчивости [5, 6]. Целью данной работы является изучение свойства устойчивости обобщенного (при различных значениях степени нелинейного слагаемого) алгоритма «супер-скручивания».

Всюду в данной работе будет использоваться следующее обозначение: для $x \in \mathbb{R}$

$$\lceil x \rfloor^{\alpha} = sign(x)|x|^{\alpha}$$

Рассматривается система

(1)
$$\begin{cases} \dot{x}_1 = x_2 - k \lceil x \rfloor^{\alpha} \\ \dot{x}_2 = \xi - \mu \lceil x \rfloor^{0}, \end{cases}$$

где $\xi = \xi(t)$ – неизвестное, ограниченное ($|\xi(t)| \leqslant \xi_0$), измеримое входное воздействие, $\alpha \in \mathbb{R}, 0 < \alpha < 1$.

Требуется исследовать данную систему на устойчивость в зависимости от значения параметров k, μ, α

2. Анализ устойчивости

При $\alpha = 1/2$ данная система представляет собой классический [4] алгоритм "super-twisting". Для нее, с помощью анализа фазового пространства, было показано [6], что траектории системы с любым возмещением из рассматриваемого класса будут ограничены траекторией системы с «наихудшим» возмущением:

(2)
$$\xi^* = \xi_0 sign(\dot{x}_1) = \xi_0 sign(x_2 - k \lceil x_1 \rfloor^{\alpha})$$

Из ограниченности траекторий следует, что для исследования устойчивости таких систем достаточно рассматривать системы с возмущением (2).

Рассуждения о наихудшей помехе из [6] могут быть без изменений применены к системе (1) с произвольным α . Всюду далее в данной работе будет рассматриваться система (1) с возмущением (2):

(3)
$$\begin{cases} \dot{x}_1 = x_2 - k \lceil x_1 \rfloor^{\alpha} \\ \dot{x}_2 = \xi^* - \mu \lceil x_1 \rfloor^0, \end{cases}$$

Для случая $\alpha=1/2$ известны [6] необходимые и достаточные условия асимптотической устойчивости системы (1). Кроме того, для любых $\xi_0>0, \mu>\xi_0$ существует $k_0=k_0(\mu,\xi_0)$, такое, что при любом $k>k_0$ система (3) с параметрами $(k,\mu,\alpha=1/2)$ будет устойчива, при $k=k_0$ система устойчива, но не асимптотически, а при $k< k_0$ система неустойчива.

2.1. Случай $\alpha < 1/2$

Начнем рассмотрение со случая $0<\alpha<1/2$. Для этого будем сравнивать траекторию системы (3) с произвольными параметрами $k,\mu,\alpha<1/2$ с траекторией асимптотически устойчивой системы

(4)
$$\begin{cases} \dot{x}_1 = x_2 - k^* \lceil x_1 \rfloor^{\frac{1}{2}} \\ \dot{x}_2 = \xi^* - \mu \lceil x_1 \rfloor^0, \end{cases}$$

где $k^* = k_0(\mu, \xi_0) + \varepsilon$, $\varepsilon \in \mathbb{R}$ – сколь угодно малое положительное число.

Можно показать, что существует окрестность начала координат, инвариантная для системы (4), внутри которой траектории системы (4) ограничивают сверху траектории системы (3). Из этого следует

Теорема 1. Система (1) с $0 < \alpha < 1/2$, $\mu > \xi_0$ и k > 0 является локально асимптотически устойчивой. При этом множество начальных условий системы, обеспечивающих сходимость траектории к началу координат содержит область, ограниченную траекторией системы (3) с параметрами $\alpha = 1/2, \mu, k_0(\mu, \xi_0)$ и начальными условиями

$$x_{1}(0) = 0$$

$$x_{2}(0) = \begin{cases} \sqrt{2b}exp \left\{ \frac{k_{0}}{\sqrt{8b-k_{0}^{2}}} \left(atg \frac{k_{0}}{\sqrt{8b-k_{0}^{2}}} + arctg \frac{4b-k_{0}^{2}}{k_{0}\sqrt{8b-k_{0}^{2}}}\right) \right\} \sqrt{x_{1,max}}, & k_{0}^{2} < 8b \\ x_{2}^{0} < \frac{b+k_{0}u_{1}}{u_{1}} \left(\frac{u_{1}(b+k_{0}u_{2})}{u_{2}(b+k_{0}u_{1})} \right)^{B} \sqrt{x_{1,max}}, & k_{0}^{2} \geqslant 8b \end{cases}$$

$$e \partial e \ b = \mu - \xi_0, \ u_{1,2} = \frac{-k_0 \pm \sqrt{k_0^2 - 8b}}{4}, \ B = \frac{-u_2}{u_1 - u_2}, \ x_{1,max} = \left(\frac{k}{k_0}\right)^{\frac{2}{1 - 2\alpha}}.$$

2.2. Случай lpha>1/2

Аналогично случаю $\alpha < 1/2$ будем сравнивать траекторию системы (3) с траекторией неустойчивой системы

(5)
$$\begin{cases} \dot{x}_1 = x_2 - k_* \lceil x_1 \rfloor^{\frac{1}{2}} \\ \dot{x}_2 = \xi^* - \mu \lceil x_1 \rfloor^0, \end{cases}$$

где $k_*=k_0(\mu,\xi_0)-arepsilon$, где arepsilon>0 – сколь угодно малое число.

Можно показать, что существует окрестность начала координат, в которой траектории системы (5) будут ограничивать снизу траектории системы (3). Это, в свою очередь означает справедливость следующего утверждения:

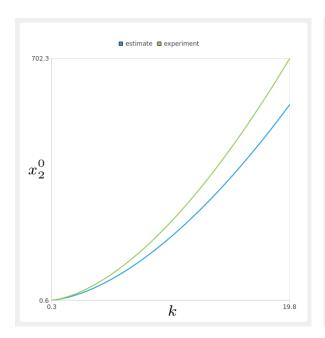
Теорема 2. Система (1) с параметром α из интервала (1/2; 1) не является устойчивой ни при каких значениях параметров μ и k.

3. Численное моделирование

Выше было показано, что при $0 < \alpha < 1/2$ система (3) локально асимптотически устойчива при любых k > 0, $\mu > \xi_0$. При этом неизвестно, может ли такая система быть глобально устойчива при каких-то значениях параметров. Проведенное численное исследование показывает, что при любых значениях параметров решения неустойчивы вне некоторой ограниченной области. На Рис. 1 представлено сравнение величины (по координате x_2) области сходимости системы (3) с полученной в Теореме 1 оценкой при различных значениях параметра k.

В случае же, когда $1/2 < \alpha < 1$ численное моделирование показывает, что хотя система (3) не является устойчивой ни при каких значения параметров k и μ , в таких системах имеет место предельный цикл, область притяжения которого глобальна.

Можно получить нижнюю оценку величины таких предельных циклов, аналогично тому, как получена оценка величины области устойчивости в случае $0 < \alpha < 1/2$. На Рис. 2 приведено сравнение полученных экспериментально размеров предельного цикла с их теоретической оценкой. При этом, при увеличении значения параметра k размер предельного цикла приближается к нулю.



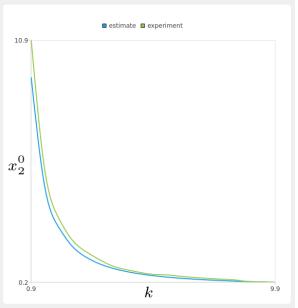


Рис. 1. Область устойчивости при $0 < \alpha < 1/2$

Рис. 2. Размер предельного цикла при $\alpha > 1/2$

Список литературы

- 1. Емельянов С.В., Коровин С.К., Левантовский Л.В. Скользящие режимы высших порядков в бинарных системах управления // Докл. АН СССР. 1986. Т. 287, № 6, С. 1338—1342.
- 2. Емельянов С.В., Коровин С.К., Левантовский Л.В. Новый класс алгоритмов скольжения второго порядка // Матем. моделирование. 1990. Т. 2, № 9, С. 89–100.
- 3. Shtessel, Y., Edwards, C., Fridman, L., Levant A. Sliding Mode Control and Observation. NY: Springer, 2014. 320 p.
- 4. Levant, A. Sliding Order and Sliding Accuracy in Sliding Mode Control // International Journal of Control. 1993. Vol. 58. P. 1247–1263.
- 5. Seeber, R., Horn, M. Necessary and sufficient stability criterion for the super-twisting algorithm // 2018 15th International Workshop on Variable Structure Systems (VSS). 2018. P. 120–125.
- 6. Фомичев В.В., Высоцкий А.О. Критерий устойчивости и точные оценки для алгоритма «суперскручивания» // Дифференциальные уравнения. 2023. Т. 59, № 2. С. 252–256.