ПОСЛЕДОВАТЕЛЬНОЕ ЭКСПЕРИМЕНТИРОВАНИЕ С ИСПОЛЬЗОВАНИЕМ НЕСИММЕТРИЧНЫХ ПЛАНОВ ВТОРОГО ПОРЯДКА

И.Н. Сидняев

Московский государственный технический университет им. Н.Э. Баумана Россия, 105005, Москва, Рубцовская наб., 2/18 E-mail: sidnyaev@yandex.ru

Э. Баттулга

Московский государственный технический университет им. Н.Э. Баумана Россия, 105005, Москва, Рубцовская наб., 2/18 E-mail: enhee_jrgl@yahoo.com

Ключевые слова: планы, экспериментирование, ядро, матрица, реплика, функция.

Аннотация: Представлены основные методы эффективного экспериментирования, которые оказываются весьма полезными при планировании проектировании летательных аппаратов и их последующем проведении для выбора наилучшей модели среди ряда возможных, а также эффективного оценивание параметров выбранной модели. При планировании осуществляется выбор контролируемых переменных, включаемых в эксперимент.

Технологи в подавляющем большинстве случаев стремятся к тому, чтобы опытов в эксперименте было как можно меньше, они обычно стараеются выбрать план эксперимента насыщенный или близкий к нему [1]. Одним из наиболее близких к насыщенным являются планы Хартли. Планы Хартли – это композиционные планы. Они содержат ядро плана, 2^n осевых точек и одну центральную точку. Причем планы Хартли в качестве ядра плана используют регулярные дробные реплики вида 2^{n-p} и в этом смысле во многом подобны ортогональным и ротатабельным композиционным планам (ОЦКП, РЦКП) и композиционным планам типа Бокса B_n . Однако имеются и определенные различия в выборе ядра плана. В симметричных ЦКП (к которым относятся ОЦКП, РЦКП и план типа B_n) ядро плана выбирается из условия получения базисных оценок коэффициентов при линейных $1, x_1, x_2, x_3, \dots, x_n$ и всех парных взаимодействиях $x_1 x_2, x_1 x_3, \dots, x_{n-1} x_n$ Поэтому в ОЦКП, РЦКП и планах B_n используются в качестве ядра плана полного факторного эксперимента (ПФЭ) 2^n или дробного факторного эксперимента ДФЭ 2^{n-p} . Причем на степень дробности р накладывается весьма жестокое ограничение. Все это приводит к тому, что число точек спектра планов B_n ОЦКП и РЦКП значительно превышает число оцениваемых коэффициентов регрессии. Рассмотрим, какие минимальные требования необходимо предъявить к регулярным дробным репликам 2^{n-p} , составляющим ядро композиционного плана, с тем чтобы информационная матрица Фишера осталась невырожденной. Пусть дана матрица базисных функций (табл. 1) некоторого композиционного плана, в ядре плана которого полностью совпадают столбцы $1, x_1, x_2, \dots, x_n, x_1x_2, x_1^2, \dots, x_2^2$. Это ядро затем дополняется осевыми «звездными» точками. В этом случае столбцы линейно независимыми, а информационная матрица Фишера композиционного плана — невырожденной. Если в ядре композиционного плана оказываются одинаковыми столбцы двух различных парных взаимодействий, то добавление осевых «звездных» или центральных точек не позволяет сделать эти столбцы линейно независимыми.

Таблица 1. Компоненты несимметричных планов

Базисные функции	1	x_1	•••	x_n	x_1x_2	•••	$x_{n-1}x_n$	x_{1}^{2}	•••	x_n^2
	+1	+1		+1	+1		+1	+1		+1
	+1	+1	• • •	+1	+1		+1	+1		+1
	+1	+1	• • •	+1	+1		+1	+1		+1
Ядро плана	+1	+1	• • •	+1	+		+1	+1		+1
	+1	+1		+1	+1		+1	+1		+1
Осевые точки	+1	$-\alpha$		0	0		0	α^2		0
	+1	$+\alpha$		0	0		0	α^2		0
	+1	0		0	0		0	0		0
		•••							•••	
	+1	0		$-\alpha$	0		0	0		α^2
	+1	0		+α	0		0	0		α^2
	+1	0		0	0		0	0		0
Центральные точки							•••			•••
	+1	0		0	0		0	0		0

Из этих рассуждений становится очевидным, какое требование следует предъявить к регулярным дробным репликам 2^{n-p} составляющим ядро композиционного плана, чтобы информационная матрица Фишера была невырожденной: в дробных репликах столбцы парных взаимодействий должны быть линейно независимыми. Такие дробные реплики 2^{n-p} и составляют ядро плана Хартли. Сформулированное требование к ядру плана позволяет использовать в качестве ядра реплики большой дробности. Например, при n=4 в качестве ядра плана можно использовать дробную реплику 2^{4-1} с определяющим соотношением $1=\pm x_1x_2x_3x_4$ (или $1=\pm x_1x_2x_4$; $1=\pm x_1x_2x_3x_4$ так как при этом столбцы парных взаимодействий будут линейно зависимыми.

Для того, чтобы задать план Хартли, необходимо:

- 1. Указать вид используемой дробной реплики и соответствующие планирующие соотношения;
- 2. Выбрать значение «звездной точки» α . Всегда можно подобрать величину плеча α .так, чтобы матрица базисных функций для плана Хартли была близкой к ортогональной.

В общем случае планы Хартли нельзя сделать полностью ортогональными или ротатабельными (за исключением, если n=5) путем подбора осевого плеча α . Поэтому обычно принимают $\alpha=\pm 1$ экономически целесообразен, так как варьирование факторов на трех уровнях значительно упрощает и удешевляет эксперимент. Это связано с количеством изготавливаемых узлов и механизмов, а иногда и целевых агрегатов. Очевидно, что планы Хартли при n=2,3,4,6 весьма близки к насыщенным (табл. 1), чего нельзя сказать о планах Хартли при n=5,7. Поэтому Вестлейком для

размерностей n = 5,7,9 были построены композиционные планы, близкие к насыщенным.

Композиционные планы Вестлейка состоят из ядра плана, 2^n осевых точек и одной центральной точки. В качестве ядра плана Вестлейка используются нерегулярные дробные реплики. Так же, как и в планах Хартли, к ядру плана Вестлейка предъявляется требование: столбцы парных взаимодействий в матрице базисных функций должны быть линейно независимы. Это требование будет выполняться, если для НДР типа $l \cdot 2^{n-p}$ в дробной реплике 2^{n-p} линейно независимыми являются столбцы не более, чем l парных взаимодействий, а определяющее соотношение входит не более , чем l-1 парных взаимодействий. В табл. 2 приведена матрица спектра плана Вестлейка, где используется НДР $13 \cdot 2^{7-6}$. Дробная реплика 2^{7-6} содержит всего два опыта, в которых основной фактор x_1 принимает значения -1 и +1 Общее число точек Nспектра этого плана равно 41.

	ı	ı	ı	ı	ı	I			
$oldsymbol{g}$	x_1	x_2	x_3	x_4	x_5	Примечание			
1	-1	-1	-1	-1	+1	$x_3 = -x_1x_2;$	Ядро плана: НДР 3 · 2 ^{5–3}		
2	+1	-1	+1	-1	+1	$x_3 = x_1x_2,$ $x_4 = -1; x_5 = -1$			
3	-1	+1	+1	-1	+1	$\chi_4 = -1, \chi_5 = -1$ 1 реплика			
4	+1	+1	-1	-1	+1	т реплика			
5	-1	-1	+1	-1	+1	$\gamma_{-} = \gamma_{-} \gamma_{-}$			
6	+1	-1	-1	-1	+1	$x_3 = x_1 x_2;$			
7	-1	+1	-1	-1	+1	$x_4 = -1; x_5 = 1$			
8	+1	+1	+1	-1	+1	2 реплика			
9	-1	-1	+1	+1	+1	$x_3 = x_1 x_2;$			
10	+1	-1	-1	+1	+1	$x_3 = x_1x_2,$ $x_4 = 1; x_5 = 1$			
11	-1	+1	-1	+1	+1	3 реплика			
12	+1	+1	+1	+1	+1	э реплика			
13	-1	0	0	0	0				
14	+1	0	0	0	0				
15	0	-1	0	0	0				
16	0	+1	0	0	0				
17	0	0	-1	0	0	Осевые точки. Величина осевого плеча $\alpha=1$			
18	0	0	+1	0	0				
19	0	0	0	-1	0				
20	0	0	0	+1	0				
21	0	0	0	0	-1				
22	0	0	0	0	+1				
23	0	0	0	0	0	Центральная точка			

Таблица 2. Один из вариантов матрицы спектра плана Вестлейка при n=5.

Если областью экспериментирования является гиперкуб, обычно для планов Вестлейка принимают величину осевого плеча $\alpha = \pm 1$.

Рассмотрим применение плана Хартли. для изучения прочности крыла самолета в качестве факторов приняты следующие переменные: угол атаки x_1 величина отклонения интерцептора x_2 , частота вращения закрылок x_3 , шаг установки нервьюр x_4 количество нервюр x_5 Величина прочности крыла летательного аппарата, выражаемая в процентах, принята за отклик y. Решено провести эксперимент по плану Хартли, так как на основании данных предварительных экспериментов следовало ожидать нелинейного характера функции отклика в изучаемой области экспериментирования. Выбранные факторы и уровни их варьирования указаны в табл. 3.

Таблица 3. Факторы, уровни и шаги их варьирования.

Факторы	<i>x</i> ₁ град	x_2 MM	x_3 мин ⁻¹	x_4 MM	<i>х</i> ₅ шт
О сновной уровень $X_{i0}(x_{i0} = 0)$	9	40	260	29	25
Шаг варьирования ΔX_i	9	20	40	8	15
Нижний уровень $X_{iH}(x_{iH} = -1)$	0	20	220	21	10
Верхний уровень $X_{i_{\rm B}}(x_{i_{\rm B}}=+1)$	18	60	300	37	40

Ядром выбранного плана Хартли является полуреплика 2^{5-1} с определяющим соотношением $1 = x_1 x_2 x_3 x_4 x_5$, планирующим соотношением $x_5 = x_1 x_2 x_3 x_4$ и осевым плечом $\alpha = \pm 1$. Матрица спектра плана Хартли представлена в работе [1]. В результате статистических вычислений, получена следующая математическая модель:

$$\hat{y}(x,b) = 21,69 - 1,23x_1 - 9,30x_21,25x_3 + 2,24x_4 + 0,77x_5 + 0,60x_1x_2 + 0,25x_1x_3 - 0,61x_1x_4 + 1,03x_2x_3 - 0,82x_2x_4 + 0,28x_2x_5 - 0,55x_3x_5 - 0,26x_4x_5 + 4,94x_1^2 + 4,49x_2^2 + 1,80x_3^2 + 1,62x_4^2 - 2,85x_5^2.$$

Для проверки гипотезы об адекватности математической модели и функции отклика вычислим выборочную дисперсию:

$$S_{\text{OTK}}^2 = \frac{\sum_{g=1}^{27} (\bar{y}_g - \hat{y}_g)^2}{N-d} = \frac{1,24}{8} = 0,155.$$

 $S_{
m oth}^2=rac{\Sigma_{g=1}^{27}(ar{y}_g-\hat{y}_g)^2}{N-d}=rac{1,24}{8}=0,155.$ Так как $S^2\{ar{y}\}=0,1774>S_{
m oth}^2=0,155$, то выборочное значение F- критерия проверки определится из выражения $F = \frac{S^2\{\bar{y}\}}{S_{\text{corr}}^2} = 1,445.$

 $F = 1.1445 < F_{1-q}(v_1 = N(m-1) = 54, v_2 = 8) = 3,005$ (где $F_{1-q}(54.8) - (1-q)\%$ -й квартиль распределения Фишера при q = 0.05 с числами степеней свободы $v_1 = 54, v_2 = 8$), то проверяемая гипотеза об адекватности математической модели и функции отклика не противоречит результатам наблюдений отклика. Кроме планов Хартли и Вестлейка несимметричным планами второго порядка являются планы, композиционные по отношению к ортогональным планам главных эффектов, и насыщенные планы Рехтшафнера.

Планы, композиционные по отношению к ортогональным планам главных эффектов, состоят из первой (ядро плана) и второй композиции. Ядро этих планов представляет собой ортогональный трёхуровневый (-1,0,+1) план, который позволяет на первом этапе оценить так называемые главные эффекты, т.е. коэффициенты $\beta_0, \beta_i, \beta_{ii}$ и получить уравнение вида $\hat{y}(x, b) = b_0 + \sum_{i=1}^n b_i x_i + \sum_{i=1}^n b_{ii} x_i^2$.

На втором этапе план достраивается для получения оценок всех коэффициентов математической модели. В качестве второй композиции может быть принят $\Pi\Phi \ni 2^n$ или ДФЭ 2^{n-p} .

Такие планы можно строить различными способами, исходя из того, чтобы они являлись наилучшими с позиции какого-либо критерия оптимальности, например, были достаточно близки к насыщенным и в то же время возможно меньше отличались от непрерывных планов по критерию D — оптимальности. Общее число точек спектра таких планов для n=3,4,5 равно соответственно N=13,17,32. В качестве второй композиции для указанных планов выбрано: для $n=3-Д\Phi \ni 2^{3-1}$ с планирующим соотношением $x_3=x_1x_2$; для $n=4-Д\Phi \ni 2^{4-1}$ с планирующим соотношением $x_4=x_1x_2$; для $n=5-Д\Phi \ni 2^{5-1}$ с планирующим соотношением $x_5=-x_2x_3x_4$.

В общем случае планы Хартли и Вестлейка являются несимметричными, что приводит к существенному усложнению расчетов при обработке экспериментальных данных и обычно требуется привлечение ЭВМ. Для этих планов вычисление оценок коэффициентов регрессии, все процедуры статистического приводиться в соответствии с общими формулами регрессионного анализа.

Список литературы

1.	Сидняев Н.И. Статистический анализ и теория планирования эксперимента/Н.И. Сидняев. М.: Изд-во МГТУ им. Н.Э. Баумана, 2017. 195 с.