УДК 531.36

ОБ УПРОЩЕНИИ ИССЛЕДОВАНИЯ УПРАВЛЯЕМОЙ ДИНАМИКИ РОБОТА ДЕЛЬТА ПРИМЕНЕНИЕМ АЛЬТЕРНАТИВНОЙ МОДЕЛИ СВЯЗЕЙ

А.Я. Красинский

Московский авиационный институт (Национальный исследовательский университет) Россия, 125993, Москва, Волоколамское шоссе, 4 E-mail: krasinsk@mail.ru

Ключевые слова: геометрические связи, моделирование, избыточные координаты.

Аннотация: Математическое моделирование динамики робота Дельта существенно упрощено использованием альтернативной формы нелинейных уравнений связей, основанной на строгом учете, в отличие от всех известных результатов, поступательного характера движения схвата робота. Общими методами аналитической механики несвободных систем построена нелинейная модель динамики робота Дельта в виде свободных от множителей связей векторно-матричных уравнений в избыточных координатах как системы с тремя геометрическими связями. Размерность модели сокращена на удвоенное количество связей по сравнению с традиционно применяемыми моделями.

1. Введение

В дельта-роботе [1, 2] неподвижное верхнее основание посредством трех двухзвенных кинематических цепей соединено с небольшой подвижной платформой (Рис.1). Платформы имеют форму равносторонних треугольников со сторонами a и b соответственно Введем неподвижную систему координат *Охуz*, начало которой *О* размещено в центре верхнего основания, ось z направлена вертикально вверх, а ось x вдоль оси симметрии верхнего основания.

Рис. 1. Схема робота Дельта.

Пусть α, β, γ - углы отклонения плеч *AP*, *BQ*, *CS* длины *l* от вертикали и $O_1(x, y, z)$ – центр подвижной платформы (рис. 1). Положение системы определяется параметрами $\alpha, \beta, \gamma, x, y, z$. Пусть α, β, γ - независимые координаты, а зависимые - x, y, z. Обычно нижние звенья реализуются в виде параллелограммов, что обеспечивает поступательное движение нижней платформы, в силу чего параметров $\alpha, \beta, \gamma, x, y, z$ вполне достаточно для исследования динамики системы. Но, начиная с работы ([2].,фиг. 3.2), и до сих (напр. [3-13]) для определения координат концов нижних звеньев кинематических цепей используются по три угла (напр. [9] $\varphi_{1i}, \varphi_{2i}, \varphi_{3i}; i = 1,2,3$) на каждую цепь (рис. 2):

Рис. 2. Схемы для традиционного определения координат узлов в подвижной платформе.

В результате изначально простые (напр. (3.9) [9]) соотношения для трех геометрических связей приобретают чрезвычайно громоздкий вид, особенно если применяется [9] процедура Денавита-Хартенберга.

В данной работе на примере робота Дельта показано, насколько эффективным может быть квалифицированное применение общих методов аналитической механики при рассмотрении самых сложных современных технических устройств.

2. Математическая модель манипулятора

2.1. Альтернативная форма уравнений связей

Основой упрощения исследования является альтернативная форма уравнений геометрических связей, использующая поступательный характер движения нижней платформы манипулятора. Из рис. 3, 4 могут быть определены координаты: точек установки исполнительных приводов A, B, C; точек P.Q, S - узлов в нижних концах плеч AP, BQ, CS; точек K, M, N – узлов, соединяющих нижние концы рычагов PK, QM, SN длины d и подвижную платформу:

Рис. 3. Координаты узлов К, М, N нижней платформы (слева) и точек А, В, С установки

двигателей

(2)

Рис. 4. Схемы для определения координат узлов *P*.*Q*, *S* в нижних концах плеч.

Принципиальное отличие нашего подхода: координаты точек *К*, *М*, *N* выражены через координаты точки $O_1(x, y, z)$ и только три угла α, β, γ (а не девять [9] углов). Нет необходимости, в отличие от [1-13], в рассмотрении обратной задачи кинематики. Поэтому уравнения трех геометрических связей получают простой (ср. (69) [9]) вид:

(1)

$$x^{2} + \left(\frac{a-b}{2\sqrt{3}} + l\sin\alpha + y\right)^{2} + (l\cos\alpha + z)^{2} = d^{2};$$

$$\left(\frac{a-b}{4} + l\frac{\sqrt{3}}{2}\sin\beta - x\right)^{2} + \left(\frac{a-b}{4\sqrt{3}} + \frac{l\sin\beta}{2} - y + (l\cos\beta + z)\right)^{2} = d^{2};$$

$$\left(\frac{a-d}{4} + l\frac{\sqrt{3}}{2}\sin\gamma + x\right)^{2} + \left(\frac{a-b}{4\sqrt{3}} + \frac{l\sin\gamma}{2} - y\right)^{2} + (l\cos\gamma + z)^{2} = d^{2};$$

2.2. Уравнения динамики в избыточных координатах

Простота уравнений (1) в общем случае создает возможность полностью аналитического упрощения исследования применением свободных от множителей связей уравнений в избыточных координатах [14-16]. Размерность модели сокращается сравнении с (86) [9] на удвоенное число связей за счет исключения из рассмотрения скоростей зависимых координат из продифференцированных уравнений (1) и множителей связей [14-16].

Дифференцирование по времени уравнений связей (1) в аналитическом виде дает

$$\begin{pmatrix} \rho_{11} & \rho_{12} & \rho_{13} \\ \rho_{21} & \rho_{22} & \rho_{23} \\ \rho_{31} & \rho_{32} & \rho_{33} \end{pmatrix} \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix} = \begin{pmatrix} \sigma_1 \dot{\alpha} \\ \sigma_2 \dot{\beta} \\ \sigma_3 \dot{\gamma} \end{pmatrix};$$

$$\rho_{11} = x; \rho_{12} = \frac{a-b}{2\sqrt{3}} + l \sin \alpha + y; \rho_{13} = l \cos \alpha + z; \rho_{23} = l \cos \beta + z; \rho_{33} = l \cos \gamma + z$$

$$\rho_{21} = x - \frac{a-b}{4} - l \frac{\sqrt{3}}{2} \sin \beta; \rho_{22} = y - \frac{a-b}{4\sqrt{3}} - \frac{l}{2} \sin \beta; \rho_{31} = x + \frac{a-b}{4} + l \frac{\sqrt{3}}{2} \sin \gamma;$$

$$\rho_{32} = y - \frac{a-b}{4\sqrt{3}} - \frac{l}{2}\sin\gamma; \ \sigma_2 = l\left(z\sin\beta - \left(\frac{a-b}{2\sqrt{3}} - \frac{\sqrt{3}}{2}x - \frac{y}{2}\right)\cos\beta\right);$$

$$\sigma_1 = l\left(z\sin\alpha - \left(\frac{a-b}{2\sqrt{3}} + y\right)\cos\alpha\right); \ \sigma_3 = l\left(z\sin\gamma - \left(\frac{a-b}{2\sqrt{3}} + \frac{\sqrt{3}}{2}x - \frac{y}{2}\right)\cos\gamma\right);$$

Из (2) зависимые скорости легко выражаются аналитически через параметры системы

$$(3) \qquad \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix} = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} \begin{pmatrix} \dot{\alpha} \\ \dot{\beta} \\ \dot{\gamma} \end{pmatrix};$$

$$k_{11} = \rho_{21} - \frac{\rho_{23}}{\rho_{13}} \rho_{11}; \quad k_{12} = \rho_{22} - \frac{\rho_{23}}{\rho_{13}} \rho_{12}; \quad k_{21} = \rho_{31} - \frac{\rho_{33}}{\rho_{13}} \rho_{11}; h_{3} = h_{1} \frac{\rho_{23}}{\rho_{13}} - \frac{\rho_{33}}{\rho_{13}} \\ k_{22} = \rho_{32} - \frac{\rho_{33}}{\rho_{13}} \rho_{12}; \qquad h_{1} = \frac{k_{21}}{k_{11}}; \qquad h_{2} = k_{22} - h_{1}k_{12}; \quad h_{4} = \frac{\rho_{11}}{k_{11}} k_{12} - \rho_{12} \\ b_{11} = \frac{\sigma_{1}}{k_{11}} \left(-\frac{\rho_{23}}{\rho_{13}} - \frac{k_{12} \left(h_{1} - \frac{\rho_{33}}{\rho_{13}} \right) }{h_{2}} \right); \qquad b_{12} = \frac{\sigma_{2}k_{22}}{k_{11}h_{2}}; \qquad b_{13} = \frac{\sigma_{3}}{k_{11}h_{2}}; \\ b_{21} = \frac{h_{4}\sigma_{1}}{h_{2}}; \qquad b_{22} = -\frac{h_{1}\sigma_{2}}{h_{2}} \qquad b_{23} = \sigma_{3}; ; \\ b_{31} = \frac{\sigma_{1}}{\rho_{13}} \left(1 + \frac{\rho_{11}\rho_{23}}{k_{11}\rho_{13}} + \frac{h_{3}h_{4}}{h_{2}} \right); \qquad b_{32} = \frac{\sigma_{2}}{\rho_{13}h_{2}} \left(\rho_{21}h_{1} - \frac{\rho_{11}k_{22}}{k_{11}} \right); \qquad b_{33} = \frac{\sigma_{3}h_{4}}{\rho_{13}h_{2}};$$

Чтобы реализовать переход [14-16] к уравнениям в избыточных координатах, нужно, используя (3), исключить зависимые скорости из функции Лагранжа

$$L(r, \dot{r}, s, \dot{s}) = \frac{1}{2} \left(J + \frac{ml^2}{3} \right) \left(\dot{\alpha}^2 + \dot{\beta}^2 + \dot{\gamma}^2 \right) + \frac{M}{2} \left(\dot{x}^2 + \dot{y}^2 + \dot{z}^2 \right) + Mgz + \frac{mgl}{2} \left(\cos \alpha + \cos \beta + \cos \gamma \right)$$

Здесь: *т* массы плеч AP, BQ, CS; *М* массы приводов; *J* моменты инерции роторов моторов вместе редукторами. Массами рычагов *PK*, *QM*, *SN* пренебрежем. Такой подход вполне оправдан с практической точки зрения, так как обычно подобные подвижные части максимально облегчаются и изготавливаются из лёгких композитных материалов. Учет этих масс не усложняет модель [17]. Функция Лагранжа после исключения зависимых скоростей имеет простой аналитический вид

(4)
$$L^{*}(r,s,\dot{r}) = \frac{1}{2}\dot{r}' \cdot a^{*}(r,s) \cdot \dot{r} + Mgz + \frac{mgl}{2}(\cos\alpha + \cos\beta + \cos\gamma);$$
$$r = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}; s = \begin{pmatrix} x \\ y \\ z \end{pmatrix}; a^{*}(r,s) = \begin{pmatrix} a_{11}^{*} & a_{12}^{*} & a_{13}^{*} \\ a_{21}^{*} & a_{22}^{*} & a_{23}^{*} \\ a_{13}^{*} & a_{23}^{*} & a_{33}^{*} \end{pmatrix}; B(r,s) = \|b_{ij}\|; i, j = \overline{1,3};$$
$$a_{11}^{*} = J + \frac{ml^{2}}{3} + M(b_{11}^{2} + b_{21}^{2} + b_{31}^{2}); a_{12}^{*} = M(b_{11}b_{12} + b_{21}b_{22} + b_{31}b_{32});$$

$$\begin{aligned} a_{22}^{*} &= J + \frac{ml^{2}}{3} + M\left(b_{12}^{2} + b_{22}^{2} + b_{32}^{2}\right), \quad a_{23}^{*} &= M\left(b_{13}b_{12} + b_{21}b_{22} + b_{33}b_{32}\right); \\ a_{33}^{*} &= J + \frac{ml^{2}}{3} + M\left(b_{13}^{2} + b_{23}^{2} + b_{33}^{2}\right), \quad a_{13}^{*} &= M\left(b_{11}b_{13} + b_{21}b_{23} + b_{31}b_{33}\right); \\ a_{22}^{*} &= J + \frac{ml^{2}}{3} + M\left(b_{12}^{2} + b_{22}^{2} + b_{32}^{2}\right), \quad a_{23}^{*} &= M\left(b_{13}b_{12} + b_{21}b_{22} + b_{33}b_{32}\right); \\ a_{33}^{*} &= J + \frac{ml^{2}}{3} + M\left(b_{13}^{2} + b_{23}^{2} + b_{33}^{2}\right), \quad a_{13}^{*} &= M\left(b_{11}b_{13} + b_{21}b_{23} + b_{31}b_{33}\right); \end{aligned}$$

Функция (4) полностью выражена аналитически через параметры системы. Поэтому математическая модель динамики моделируемой системы может быть получена с помощью известного алгоритма [14-17] в виде свободных от множителей уравнений в избыточных координатах:

(5)
$$\frac{d}{dt}\frac{\partial L^*}{\partial \dot{r}} - \frac{\partial L^*}{\partial r} = Q_r + B'(r,s)\frac{\partial L^*}{\partial s}; \ \dot{s} = B(r,s)\dot{r};$$

Q_r вектор сил, отнесенных к независимым координатам.

Новая форма (1) уравнений связей в общем случае создает возможность аналитического получения математической модели управляемой динамики робота Дельта в виде (5), размерность которой в нормальной форме равна 9, значительно меньше традиционно используемых. Предложенный подход упрощает исследование системы и позволяет включать [14-17] в модель исполнительные приводы.

Список литературы

- Clavel R. Une nouvelle structure de manipulateur parallèle pour la robotique légère // APII. 1989. Vol. 23, No. 6. P. 501-519.
- Clavel R. Conception d'un robot parallele rapide 'a 4degres de liberte". Ph.D. Thesis, EPFL, Lausanne, 1991. No. 925.
- Codourey A. Dynamic Modelling and Mass Matrix Evaluation of the DELTA Parallel Robot for Axes Decoupling Control // Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Osaka (JP). 1996. P. 1211-1218.
- Codourey A. Dynamic Modeling of Parallel Robots for Computed-Torque Control Implementation // International Journal of Robotics Research. 1998. Vol. 17, No. 12. P. 1325-1336.
- 5. Staicu S., Carp-Ciocardia D. Dynamic analysis of Clavel's Delta parallel robot // Proceedings of the IEEE International Conference on Robotics and Automation ICRA'2003. Vol. 3. P. 4116-4121.
- Brinker J., Corves B., Wahle M. Comparative study of inverse dynamics based on Clavel's Delta robot // Proceedings of the 14th IFToMM World Congress. Taipei. 2015.
- Brinker J., Corves B. Lagrangian based dynamic analyses of delta robots with serial-parallel architecture // Proceedings of the Symposium on Robot Design, Dynamics and Control. Springer. 2016. P. 133-141.
- 8. Kuo Y.-L. Mathematical modeling and analysis of the Delta robot with flexible links // Computers and Mathematics with Applications. 2016. Vol. 71, No. 10. P. 1973-1989.
- 9. Brinker J., Funk N., Ingenlath P., Takeda Y., Corves B. Comparative study of serial-parallel delta robots with full orientation capabilities // IEEE Robot. Autom. Lett. 2017. Vol. 2, No. 2. P. 920-926.
- Brinker J., Corves B., Takeda Y. Kinematic and Dynamic Dimensional Synthesis of Extended Delta Parallel Robots // Robotics and Mechatronics. Cham: Springer, 2019. P. 131-143.
- Makwana M., Patolia M. Model-based motion simulation of delta parallel robot // Journal of Physics: Conference Series 2115. 2021. P. 012002.
- 12. Zhang S., Liu X., Yan B., Han X., Bi J. Dynamics Modeling of a Delta Robot with Telescopic Rod for Torque Feed forward Control // Robotics. 2022. Vol. 11, No. 36.
- 13. Kim T-H, Kim Y, Kwak T, Kanno M. Metaheuristic Identification for an Analytic Dynamic Model of a Delta Robot with Experimental Verification // Actuators. 2022. Vol. 11, No. 12. P. 352.
- Krasinskiy A.Ya., Krasinskaya E.M. Complex Application of the Methods of Analytical Mechanics and Nonlinear Stability Theory in Stabilization Problems of Motions of Mechatronic Systems // A.A. Radionov and A.S. Karandaev (Eds.): RusAutoCon 2019. LNEE 641, Springer Nature, 2020. P. 357-370.

- 15. Krasinskiy A.Ya., Yuldashev A.A. Mathematical and Computer Modeling of a New Type of Two-Link Manipulator // Proceedings of 1st International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency (SUMMA). 20-22 Nov. 2019, Lipetsk, Russian Federation.
- 16. Krasinskiy A.Ya. On two methods for nonlinear modeling of the dynamics of parallel manipulators // Journal of Engineering and Technology Development Research. 2022. Vol. 1, No. 1.
- 17. Krasinskiy A.Ya., Rudnenko F., Khafizov M. On an Alternative form of the Constraint Equations for the Delta Robot and Ways to Take them into Account in Modeling // Proceedings 4th International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA). Lipetsk, Russian Federation, 2022.