МЕТОД ГЛОБАЛЬНЫХ УЛУЧШЕНИЙ В ЗАДАЧЕ ОПРЕДЕЛЕНИЯ ОПТИМАЛЬНОГО ПО БЫСТРОДЕЙСТВИЮ УПРАВЛЕНИЯ ДЛЯ ЛИНЕЙНЫХ ДИСКРЕТНЫХ СИСТЕМ

Д.Н. Ибрагимов

Московский авиационный институт (национальный исследовательский университет)
Россия, 125993, Москва, Волоколамское ш., 4
Е-mail: rikk.dan@gmail.ru

К.А. Царьков

Институт проблем управления им. В.А. Трапезникова РАН Россия, 117997, Москва, Профсоюзная ул., 65 E-mail: k6472@mail.ru

Ключевые слова: задача быстродействия, дискретные системы, метод Кротова.

Аннотация: Разработан алгоритм приближенного решения задачи поиска оптимального по быстродействию процесса управления в линейных дискретных системах. Основу алгоритма составил метод построения последовательных глобальных улучшений В.Ф. Кротова. Получены достаточные условия сходимости.

1. Введение

Рассматривается задача быстродействия для линейной дискретной системы. Эта задача состоит в определении минимального значения дискретного времени, в течение которого систему возможно перевести из заданного начального состояния в начало координат, и оптимального управления, реализующего этот процесс. Методы вычисления и оценки времени быстродействия были разработаны в [1–3]. Тем не менее даже при его известном значении актуальной остается задача определения управления, порождающего оптимальный процесс.

В настоящей работе будем считать время быстродействия известным. Тогда оптимальное управление может быть найдено из решения задачи минимизации нормы вектора состояния системы в момент времени быстродействия. Эта задача является вырожденной [1, 4], поскольку необходимые условия оптимальности в виде дискретного принципа максимума оказываются для нее бессодержательны. Различные методы регуляризации [4] позволяют решить эту проблему, но приводят, как правило, к существенным трудностям вычислительного характера. Поэтому будем подходить к решению с позиции построения глобально минимизирующей последовательности на основе метода, предложенного В.Ф. Кротовым [4,5].

2. Постановка задачи

Пусть задана линейная стационарная система с дискретным временем

(1)
$$x(k+1) = Ax(k) + u(k), \quad k = 0, 1, 2, \dots,$$

где $x(k) \in \mathbb{R}^n$ – состояние системы, $u(k) \in U$ – управление, U – выпуклое компактное множество в \mathbb{R}^n , содержащее начало координат, $A \in \mathbb{R}^{n \times n}$ – заданная матрица. Начальное условие для системы (1) фиксировано:

$$(2) x(0) = x_0 \in \mathbb{R}^n \setminus \{0\}.$$

Пусть $N_{\min} \in \mathbb{N}$ — время быстродействия для системы (1) с начальным условием (2), то есть минимальное число шагов, за которое возможно перевести систему (1) из заданного начального состояния $x_0 \neq 0$ в начало координат. Требуется построить оптимальный процесс $\{x^*(k), u^*(k-1)\}_{k=1}^{N_{\min}}$, удовлетворяющий системе (1) и условию $x^*(N_{\min}) = 0$.

3. Эквивалентные преобразования

Положим $\mathcal{U} := \{k \mapsto u(k) : \{0, \dots, N_{\min} - 1\} \to U\}$ и рассмотрим задачу

(3)
$$J(x(N_{\min})) = ||x(N_{\min})||^2 := x_1(N_{\min})^2 + \ldots + x_n(N_{\min})^2 \to \min_{n \in \mathcal{U}}.$$

Поскольку N_{\min} — время быстродействия для (1) — (2), то минимум в задаче (3) достигается и равен нулю. Более того, все решения задачи (3) и только они являются решениями (оптимальными управлениями, порождающими оптимальные процессы) в исходной задаче быстродействия для системы (1) с начальным условием (2).

Выполним еще одно полезное преобразование. Для произвольного $x \in \mathbb{R}^n$ положим $X := xx^{\mathrm{T}} \in \mathbb{R}^{n \times n}$. Тогда для любого k имеем

(4)
$$X(k+1) := x(k+1)x(k+1)^{\mathrm{T}} = (Ax(k) + u(k))(Ax(k) + u(k))^{\mathrm{T}} =$$
$$= AX(k)A^{\mathrm{T}} + Ax(k)u(k)^{\mathrm{T}} + u(k)x(k)^{\mathrm{T}}A(k)^{\mathrm{T}} + u(k)u(k)^{\mathrm{T}}$$

и
$$X(0) = x_0 x_0^{\mathrm{T}}$$
.

Применим процедуру симметрической векторизации к левой и правой частям уравнения (4) и присоединим переменные X_{ij} , $i \geqslant j$, к вектору переменных состояния x. Получим новый вектор переменных

$$y=\mathrm{svec}(x,X):=(x_1,\ldots,x_n,X_{11},X_{21},\ldots,X_{n1},X_{22},X_{32},\ldots,X_{nn})^\mathrm{T}\in\mathbb{R}^{n(n+3)/2}$$
удовлетворяющий системе уравнений

(5)
$$y(k+1) = \mathcal{A}(u(k))y(k) + \mathcal{B}(u(k)), \quad k = 0, \dots, N_{\min} - 1, \quad y(0) = y_0,$$

где $\mathcal{A}(u(k))$ и $\mathcal{B}(u(k))$ составлены по уравнениям (1) и (4), $y_0 = \text{svec}(x_0, x_0 x_0^T)$.

Соответствующая (3) оптимизационная задача при этом имеет вид

(6)
$$\mathcal{J}(y(N_{\min})) = \langle q, y(N_{\min}) \rangle \to \min_{u \in \mathcal{U}},$$

где $\langle \cdot, \cdot \rangle$ означает скалярное произведение в $\mathbb{R}^{n(n+3)/2}$ и

$$q = \text{svec}(0, I) = (0, \dots, 0, 1, 0, \dots, 0, 1, 0, \dots, 1)^{\mathrm{T}} \in \mathbb{R}^{n(n+3)/2}$$

Ясно, что задача (6) эквивалентна задаче (3). Будем искать ее решение методом последовательных улучшений.

4. Метод Кротова

Положим $\mathcal{Y} := \{k \mapsto y(k) : \{0, \dots, N_{\min}\} \to \mathbb{R}^{n(n+3)/2} \mid y(0) = y_0\}.$

Пусть $\hat{u} \in \mathcal{U}$ – некоторое произвольное управление, а $\hat{y} \in \mathcal{Y}$ – соответствующее ему решение системы уравнений

(7)
$$y(k+1) = \mathcal{A}(\hat{u}(k))y(k) + \mathcal{B}(\hat{u}(k)), \quad k = 0, \dots, N_{\min} - 1, \quad y(0) = y_0.$$

Пусть, далее, $\hat{\psi} \in \mathcal{Y}$ – решение сопряженной системы уравнений

(8)
$$\psi(k) = \mathcal{A}(\hat{u}(k))^{\mathrm{T}} \psi(k+1), \quad k = 0, \dots, N_{\min} - 1, \quad \psi(N_{\min}) = -q.$$

Рассмотрим функцию

$$R(k, y, u) = \langle \hat{\psi}(k+1), \mathcal{A}(u)y + \mathcal{B}(u) \rangle - \langle \hat{\psi}(k), y \rangle.$$

В силу (8) имеет место

(9)
$$R(k, y, \hat{u}(k)) = \langle \hat{\psi}(k+1), B(\hat{u}(k)) \rangle \quad \forall k \in \{0, \dots, N_{\min} - 1\} \quad \forall y \in \mathbb{R}^{n(n+3)/2}.$$

Следующий результат представляет собой основное утверждение об улучшении для рассматриваемой задачи. Общие теоремы об улучшении были впервые сформулированы В.Ф. Кротовым.

Теорема 1. Пусть $\hat{u} \in \mathcal{U}$, $\hat{y} \in \mathcal{Y}$ – решение (7), $\hat{\psi} \in \mathcal{Y}$ – решение (8) и $\tilde{u} \in \mathcal{U}$ удовлетворяет условию

(10)
$$R(k, \tilde{y}(k), \tilde{u}(k)) = \max_{v \in U} R(k, \tilde{y}(k), v) \quad \forall k \in \{0, \dots, N_{\min} - 1\},$$

 $e \partial e$

(11)
$$\tilde{y}(k+1) = \mathcal{A}(\tilde{u}(k))\tilde{y}(k) + \mathcal{B}(\tilde{u}(k)), \quad k = 0, \dots, N_{\min} - 1, \quad \tilde{y}(0) = y_0.$$

Тогда имеет место неравенство

$$\mathcal{J}(\tilde{y}(N_{\min})) \leqslant \mathcal{J}(\hat{y}(N_{\min})).$$

Доказательство. Пусть выполнены все перечисленные условия. Тогда, исходя из введенных обозначений, имеем

$$\mathcal{J}(\tilde{y}(N_{\min})) \stackrel{(8)}{=} -\langle \hat{\psi}(0), y_{0} \rangle + \langle \hat{\psi}(0), y_{0} \rangle - \langle \hat{\psi}(N_{\min}), \tilde{y}(N_{\min}) \rangle \stackrel{(11)}{=} \\
\stackrel{(11)}{=} -\langle \hat{\psi}(0), y_{0} \rangle - \sum_{k=0}^{N_{\min}-1} \left(\langle \hat{\psi}(k+1), \tilde{y}(k+1) \rangle - \langle \hat{\psi}(k), \tilde{y}(k) \rangle \right) \stackrel{(11)}{=} \\
\stackrel{(11)}{=} -\langle \hat{\psi}(0), y_{0} \rangle - \sum_{k=0}^{N_{\min}-1} R(k, \tilde{y}(k), \tilde{u}(k)) \stackrel{(10)}{\leq} \\
\stackrel{(10)}{\leq} -\langle \hat{\psi}(0), y_{0} \rangle - \sum_{k=0}^{N_{\min}-1} R(k, \tilde{y}(k), \hat{u}(k)) \stackrel{(9)}{=} \\
\stackrel{(9)}{=} -\langle \hat{\psi}(0), y_{0} \rangle - \sum_{k=0}^{N_{\min}-1} R(k, \hat{y}(k), \hat{u}(k)) \stackrel{(7), (8)}{=} \mathcal{J}(\hat{y}(N_{\min})).$$

Замечание 1. Пусть \hat{u} , \hat{y} , $\hat{\psi}$ взяты из теоремы 1. Тогда выполнение условия (10) для $\tilde{u} = \hat{u}$ в точности означает, что пара (\hat{y}, \hat{u}) удовлетворяет соотношениям дискретного принципа максимума в задаче (6).

Замечание 2. Пусть $\hat{u} \in \mathcal{U}$ – оптимальное управление в задаче (1) – (3), $\hat{y} \in \mathcal{Y}$ – решение (7), $\hat{\psi} \in \mathcal{Y}$ – решение (8). Тогда для любого $\tilde{u} \in \mathcal{U}$, удовлетворяющего условию (10), выполняется равенство $\mathcal{J}(\tilde{y}(N_{\min})) = \mathcal{J}(\hat{y}(N_{\min}))$.

Теорема 2. Пусть \hat{u} , \hat{y} , $\hat{\psi}$ взяты из теоремы 1. Пусть, кроме того, управление $\tilde{u} \in \mathcal{U}$ определяется условием (10) однозначно. Тогда в случае выполнения равенства $\mathcal{J}(\tilde{y}(N_{\min})) = \mathcal{J}(\hat{y}(N_{\min}))$ пара (\hat{y}, \hat{u}) удовлетворяет соотношениям дискретного принципа максимума в задаче (6).

Доказательство. Пусть все перечисленные условия выполняются, но пара (\hat{y}, \hat{u}) не удовлетворяет соотношениям дискретного принципа максимума. С учетом введенных обозначений это означает, что найдется $r \in \{0, \ldots, N_{\min} - 1\}$ такое, что

$$R(r,\hat{y}(r),\hat{u}(r)) < \max_{v \in U} R(r,\hat{y}(r),v).$$

Возьмем наименьшее такое r. Если оно равно нулю, то $\tilde{y}(r) = \hat{y}(r) = y_0$. Если r > 0, то в силу однозначной определенности $\tilde{u} \in \mathcal{U}$ имеет место

$$\tilde{u}(k) = \hat{u}(k), \quad k = 0, 1, \dots, r - 1,$$

и, следовательно, также $\tilde{y}(r) = \hat{y}(r)$. Поэтому

$$R(r,\hat{y}(r),\hat{u}(r)) < \max_{v \in U} R(r,\hat{y}(r),v) = \max_{v \in U} R(r,\tilde{y}(r),v) = R(r,\tilde{y}(r),\tilde{u}(r)).$$

Отсюда, возвращаясь к доказательству теоремы 1, находим, что

$$\sum_{k=0}^{N_{\min}-1} R(k, \tilde{y}(k), \tilde{u}(k)) = \sum_{k=0}^{r-1} R(k, \tilde{y}(k), \tilde{u}(k)) + R(r, \tilde{y}(r), \tilde{u}(r)) + \sum_{k=r+1}^{N_{\min}-1} R(k, \tilde{y}(k), \tilde{u}(k)) > \sum_{k=0}^{N_{\min}-1} R(k, \hat{y}(k), \hat{u}(k))$$

и, следовательно, $\mathcal{J}(\tilde{y}(N_{\min})) < \mathcal{J}(\hat{y}(N_{\min}))$. Теорема доказана.

Замечание 3. Можно показать, что условия теоремы 2 заведомо будут выполнены, если матрица A в системе (1) является невырожденной.

5. Алгоритм

В соответствии с полученными результатами запишем алгоритм приближенного поиска оптимального по быстродействию управления для системы (1) – (2).

- 1. Задать $\varepsilon > 0$, положить $u^{(0)} = 0$, l = 0. Составить конструкции $\mathcal A$ и $\mathcal B$.
- 2. Найти решение $y^{(l)}$ системы уравнений

$$y(k+1) = \mathcal{A}(u^{(l)}(k))y(k) + \mathcal{B}(u^{(l)}(k)), \quad k = 0, \dots, N_{\min} - 1, \quad y(0) = y_0.$$

3. Найти решение $\psi^{(l)}$ системы уравнений

$$\psi(k) = \mathcal{A}(u^{(l)}(k))^{\mathrm{T}} \psi(k+1), \quad k = 0, \dots, N_{\min} - 1, \quad \psi(N_{\min}) = -q.$$

4. Последовательно найти для каждого $k \in \{0, \dots, N_{\min} - 1\}$ решение $u^{(l+1)}(k)$ экстремальной задачи

$$\langle \psi^{(l)}(k+1), \mathcal{A}(v)y^{(l+1)}(k) + \mathcal{B}(v) \rangle \to \max_{v \in U},$$

где значения $y^{(l+1)}(k)$ вычисляются по формулам $y^{(l+1)}(0) = y_0$,

$$y^{(l+1)}(k+1) = \mathcal{A}(u^{(l+1)}(k))y^{(l+1)}(k) + \mathcal{B}(u^{(l+1)}(k)), \quad k = 0, \dots, N_{\min} - 1.$$

5. Проверить условие остановки $|\langle q, y^{(l+1)}(N_{\min}) - y^{(l)}(N_{\min}) \rangle| < \varepsilon$, в случае выполнения положить $\tilde{u} = u^{(l+1)}$ и закончить расчеты, иначе увеличить l на единицу и перейти к шагу 3.

При выполнении условий теоремы 2 последовательность пар $(y^{(l)}, u^{(l)})$, построенная в соответствии с предложенным алгоритмом, сходится к паре (y^*, u^*) , удовлетворяющей соотношениям дискретного принципа максимума в задаче (6). В том случае если эти соотношения доставляют необходимые и достаточные условия оптимальности, то u^* – оптимальное по быстродействию управление для системы (1) – (2). Степень приближения элемента $u^{(l)}$ к оптимальному управлению характеризуется близостью неотрицательной величины $\langle q, y^{(l)}(N_{\min}) \rangle$ к нулю.

6. Заключение

Естественным направлением развития полученных в работе результатов является применение метода глобальных улучшений Кротова к исследованию задачи быстродействия для линейной дискретной системы в том случае, когда известны только гарантирующие двусторонние оценки времени быстродействия, которые не совпадают. При этом метод Кротова может позволить уточнить верхнюю оценку, а при выполнении некоторых дополнительных предположений вычислить само время быстродействия и найти оптимальный процесс.

Теорема 2 доказана К.А. Царьковым за счет средств проекта Российского научного фонда № 22-11-00042 https://rscf.ru/project/22-11-00042 в ИПУ РАН.

Список литературы

- 1. Ибрагимов Д.Н., Сиротин А.Н. О задаче быстродействия для класса линейных автономных бесконечномерных систем с дискретным временем и ограниченным управлением // Автоматика и телемеханика. 2017. № 10. С. 3–32.
- 2. Ибрагимов Д.Н. О задаче быстродействия для класса линейных автономных бесконечномерных систем с дискретным временем, ограниченным управлением и вырожденным оператором // Автоматика и телемеханика. 2019. № 3. С. 3–25.
- 3. Ибрагимов Д.Н., Новожилкин Н.М., Порцева Е.Ю. О достаточных условиях оптимальности гарантирующего управления в задаче быстродействия для линейной нестационарной дискретной системы с ограниченным управлением // Автоматика и телемеханика. 2021. № 12. С. 48–72.
- 4. Кротов В.Ф., Гурман В.И. Методы и задачи оптимального управления. М.: Наука, 1973.
- 5. Коннов А.И., Кротов В.Ф. О глобальных методах последовательного улучшения управляемых процессов // Автоматика и телемеханика. 1999. № 10. С. 77–88.