ОПТИМИЗАЦИЯ И СТРУКТУРНЫЙ АНАЛИЗ УПРАВЛЕНИЯ УПРУГИМ СТЕРЖНЕМ С ПОМОЩЬЮ ПЬЕЗОАКТЮАТОРА

Г.В. Костин

Институт проблем механики им. А.Ю. Ишлинского РАН Россия, 119526, Москва, пр-т Вернадского, д. 101, корп. 1 E-mail: kostin@ipmnet.ru

Ключевые слова: управление системами с распределенными параметрами, теория упругости, оптимизация движения.

Аннотация: Исследуются продольные колебания консольно закрепленного упругого стержня, управляемого пьезоэлектрическим актюатором, который создает на определенном участке равномерно распределенную силу в поперечном сечении. Ставится задача приведения системы за фиксированное время в терминальное состояние с минимизацией квадратичной нормы пьезоэлектрической силы. Предложена обобщенная формулировка задачи, допускающая точное решение для случая однородного распределения механических параметров при рациональном отношении положения и длины актюатора к длине стержня. Анализируется влияние расположения исполнительного устройства на качество управления.

1. Введение

Изучение управляемости динамических систем с распределенными параметрами остается одним из важных направлений в теории управления. Определение области достижимости, в которое систему можно привести с помощью заданного класса управляющих воздействий, дает представление о ее предельных возможностях и подсказывает эффективные методы оптимизации движения. Так для однородного упругого стержня, управляемого с помощью нагрузки с одного конца, наименьшее время гарантированного приведения в предписанное состояние равно удвоенному времени прохождения продольной волны вдоль оси тела [1].

На основе обобщенной формулировки начально-краевой задачи, подробно изложенной в [2], в статье [3] показано, что допустимое время управления можно сократить в N раз, если добавить к краевой силе N одинаковых пьезоэлектрических актюаторов (ПА), расположенных последовательно без промежутков вдоль оси стержня и создающих кусочно-постоянную нормальную силу в поперечном сечении. В [4] доказано, что без граничной силы нельзя изменить амплитуды определенной группы мод колебаний свободного стержня и достижимыми оказываются лишь периодические терминальные состояния с длинной волны обратно пропорциональной числу ПА. В [5] рассмотрена схема, в которой ПА расположены с промежутками

периодически, и предлагается алгоритм оптимального гашения колебаний со взвешенной минимизацией квадрата интегральной нормы вектора управления.

В представленной статье, в отличие о предыдущих работ автора, изучена возможность управления продольными колебаниями консольно закрепленного однородного упругого стержня с помощью одного ПА, если координаты его концов принадлежат (за некоторым исключением) множеству рациональных чисел. Анализируется качество управления в зависимости от расположения и длины ПА.

2. Постановка задачи управления

Рассматриваются продольные колебания тонкого однородного прямолинейного упругого стержня длины L на интервале времени $t \in \mathcal{T} = (0,T)$. Левый конец стержня с координатой x = 0 жестко закреплен, правый конец с координатой x = L свободен от нагрузок. Вдоль оси стержня на интервале $x \in \mathcal{U} = (x_-, x_+)$ расположен ПА длины $\ell = x_+ - x_-$ (см. схему на рис. 1). ПА создает в поперечном сечении стержня равномерно распределенную на отрезке \mathcal{U} нормальную управляющую силу:

(1)
$$x \in \mathcal{U}: \quad f(t,x) = \dot{u}(t), x \notin \mathcal{U}: \quad f(t,x) = 0.$$

Рис. 1. Схема расположения ПА на консольно закрепленном стержне

В пространственно-временной области $(t,x) \in \mathcal{D} = \mathcal{T} \times \mathcal{X}$, $\mathcal{X} = (0,L)$, состояние стержня выражается через пару функций (w,r). Здесь $w: \mathcal{D} \to \mathbb{R}$ – это перемещение его точек, а $r: \mathcal{D} \to \mathbb{R}$ – динамический потенциал. Первая производная потенциала по времени $s = \partial_t r$ определяет нормальную силу в поперечном сечении, производная по пространственной координате $p = \partial_x r$ задает линейную плотность импульса.

Сформулируем обобщенную краевую задачу о движении свободного стержня [2]. Пусть заданы начальные распределения перемещений $w_0 \to H^1(\mathcal{X})$ и импульса $p_0 \to L^2(\mathcal{X})$, терминальное состояние $w_T \to H^1(\mathcal{X})$ и $p_T \to L^2(\mathcal{X})$ и допустимая сила $f \in L^2(\mathcal{D})$. Требуется найти кинематическую и динамическую переменные $(w^*(t,x),r^*(t,x))$, которые минимизируют функционал состояния

(2)
$$\Phi[w^*, r^*] = \min_{w,r} \Phi[w, r] = 0,$$

$$\Phi = \int_{\mathcal{D}} (\rho^{-1} g^2 + \kappa^{-1} h^2) d\mathcal{D}, \quad g = p - \rho \partial_t w, \quad h = s - f - \kappa \partial_x w;$$

$$w(0, x) = w_0(x), \quad p(0, x) = p_0(x), \quad x \in \mathcal{X};$$

$$w(T, x) = w_T(x), \quad p(T, x) = p_T(x), \quad x \in \mathcal{X};$$

$$w(t, 0) = 0, \quad s(t, L) = 0, \quad t \in \mathcal{T}.$$

Если сила f(t,x) определяется, согласно (1), через производную от функции управления $u: \mathcal{X} \to \mathbb{R}$, то можно сформулировать следующую задачу оптимального

управления. Пусть с учетом краевых условий пара функций $(w,r) \to H^1(\mathcal{D};\mathbb{R}^2)$ минимизирует функционал Φ для произвольного управления $u \in H^1(\mathcal{T})$. Требуется найти такую допустимую функцию $u^*(t)$, которая при фиксированном времени T и выполнении ограничений (2) минимизирует целевой функционал

(3)
$$J[u] = \frac{\ell}{2\kappa T} \int_{\mathcal{T}} \dot{u}^2 dt \to \min_u, \quad u(0) = 0.$$

Здесь J – это средняя потенциальная энергия, порождаемая силой f(t,x).

3. Построение точного решения

Перейдем к безразмерным переменным так, чтобы $L=\rho=\kappa=1$. Можно показать, что при таком обезразмеривании система не управляема, если $x_-=\frac{m}{2k+1}$ и $\ell=\frac{n}{2k+1}$ (см. рис. 1)), где k>1, $m\geqslant 0$, n>0 – целые числа. При таких параметрах нельзя влиять на моды колебаний с номерами j=k+2ki+i ($i\in\mathbb{Z}_+$), которым соответствует собственные частоты $\omega_j=j\pi+\frac{\pi}{2}$. Удается построить точное решение краевой задачи (2) при $x_\pm\in\mathbb{Q}$ (исключая упомянутые условия неуправляемости) и $T\geqslant 2N$. Здесь $x_\pm=N_\pm/N$, $N_-\in\mathbb{Z}_+$, $N_+,N\in\mathbb{N}$, $N_+\leqslant N$. На время управления не накладываются дополнительно никакие ограничения, но для произвольного значения T используется довольно сложный алгоритм, описанный, например, в [3]. Ограничимся более простым случаем, когда T=M/N, $M\in\mathbb{N}$.

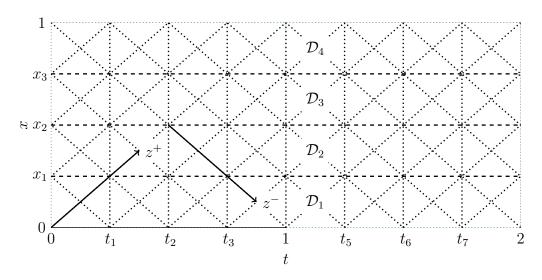


Рис. 2. Сетка на пространственно-временной области $\mathcal D$ для M=8 и N=4

Разобьем интервал \mathcal{X} на N подынтервалов $\mathcal{X}_n = (x_{n-1}, x_n)$ длины $\lambda = 1/N$ ($x_n = n/N$, $x_- = x_{N_-}$ и $x_+ = x_{N_+}$). Область определения \mathcal{D} разделим на подобласти $\mathcal{D}_n = \mathcal{T} \times \mathcal{X}_n$ (см. рис. 2), затем на равные пространственно-временные прямоугольники $\mathcal{D}_{m,n} = \mathcal{T}_m \times \mathcal{X}_n$, $\mathcal{T}_m = (t_{m-1}, t_m)$, $t_m = m/N$. В свою очередь, $\mathcal{D}_{m,n}$ разобьем диагоналями на открытые треугольники $\Delta_{k,m,n}$, k = 1, 2, 3, 4. На каждой области \mathcal{D}_n , переменные состояния (w, r) выражаются через функции бегущих волн w_n^{\pm} как

(4)
$$w(t,x) = w_n^+(z^+) + w_n^-(z^-), \quad r(t,x) = w_n^+(z^+) - w_n^-(z^-) + u_n(t), \quad z^{\pm} = t \pm x.$$

Здесь $u_n = u$ при $\mathcal{X}_n \subset \mathcal{U}$ или $u_n = 0$ при $\mathcal{X}_n \cap \mathcal{U} = \emptyset$.

Введем для каждого элемента сетки $\Delta_{k,m,n}$ уникальный набор из трех функций

(5)
$$w_{m,n}^{\pm}(z) = w_k^{\pm}(z + t_m \pm x_n), \quad u_m(z) = u(z + t_m), \quad z \in \mathcal{Z} = (0, \lambda).$$

Тогда начальные, граничные и межэлементные условия для (v,r) можно свести к системе линейных алгебраических уравнений относительно функций $w_{k,m}^{\pm}$ и u_m . Полученную систему всегда можно разрешить, если выполнены ограничения на параметры x_- и ℓ , которые обсуждались в начале этого раздела. Оставшиеся неразрешенными функции $u_m(z)$, $m=1,\ldots,M-2N$, определяются из условия минимальности целевого функционала J введенного в (3).

Из свойства непрерывности функции управления u(t) и начальных ограничений вытекают условия на краевые значения следующих переменных: $u_1(0) = 0$, $u_m(\lambda) = u_{m+1}(0)$, где $m = 1, \ldots, M-1$. После подстановки функций u_m , выполняющих краевые условия, в функционал J исходная задача (1)–(3) сводится к одномерной вариационной задаче относительно набора функций $(u_m)_{m=1}^{M-2N}$. Необходимые условия стационарности вариационной задачи – это система линейных ОДУ с постоянными коэффициентами, а также существенных краевых условий и условий трансверсальности. Решение системы находится в квадратурах.

4. Численный пример

В качестве примера возьмем краевые распределения $v(0,x) = -r(0,x) = \sin 4x$, v(T,x) = p(T,x) = 0. Пусть T=2 и $\ell=0.25$.

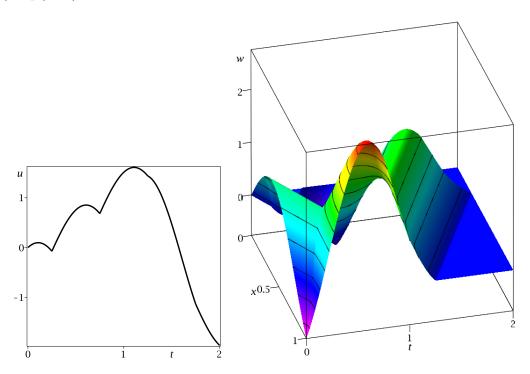


Рис. 3. Допустимое управление u(t) (слева) и перемещения w(t,x) (справа)

Для $x_{-}=0$ слева на рис. 3 показано допустимое управление u, переводящее стержень в нулевое терминальное состояние. Справа на рис. 3 приведено

Таблица 1. Зависимость значения функционала цены от положения стержня

x_{-}	0	0.25	0.5	0.75
J	1.53	8.24	3.75	22.21

соответствующее непрерывное поле перемещений w(t,x), которое построено на сетке, показанной на рис. 2, и выполняет все наложенные ограничения. Продемонстрируем зависимость нормы управления от положения ΠA для приведенных выше параметров ℓ и T. В таблице 1 помещены значения функционала J, соответствующие разным координатам левого конца ΠA $x=x_-$.

Для выбранных геометрических параметров время $T=T^*=2$ ($M^*=2N=8$) является кратчайшим из допустимых, при котором отсутствуют свободные функции u_m , предназначенные для оптимизации. При увеличении параметра $M>M^*$ уменьшается значение функционала J(M), которое с точностью до множителя равно осредненному по времени квадрату от производной \dot{u} . Для $x_-=0$ получены следующие значения: $J(9)=1.35,\ J(10)=1.14,\ J(11)=1.03,\ J(12)=0.89.$

5. Заключение

Предложена обобщенная формулировка задачи оптимального управления упругой конструкцией, представляющей собой консольно закрепленный стержень, на котором расположен ПА, создающий продольную силу. Законы состояния даны в интегральном виде, состояние описывается функцией перемещения и динамическим потенциалом. На фиксированном интервале времени ПА должен перевести систему в заданное состояние с минимизацией интеграла по времени от квадрата этой силы. Приведены условия управляемости системы. Предложен конечно-элементный алгоритм точного построения движения стержня и его оптимизации. Обсуждается возможность уменьшения ресурсов управления за счет выбора геометрических параметров ПА.

Исследование выполнено по теме государственного задания (\mathbb{N}^{2} госрегистрации 123021700055-6).

Список литературы

- 1. Бутковский А.Г. Теория оптимального управления системами с распределенными параметрами. М.: Наука, 1965.
- 2. Kostin G.V., Saurin V.V. Dynamics of Solid Structures. Methods Using Integrodifferential Relations. Berlin: De Gruyter, 2018.
- 3. Kostin G., Gavrikov A. Optimal motion of an elastic rod controlled by piezoelectric actuators and boundary forces // 2022 16th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference). 2022, IEEE Xplore Digital Library.
- 4. Kostin G., Gavrikov A. Controllability and optimal control design for an elastic rod actuated by piezoelements // IFAC-PapersOnLine. 2022. Vol. 55, No. 16. P. 350–355.
- Гавриков А.А., Костин Г.В. Оптимизация продольных движений упругого стержня с помощью периодически распределенных пьезоэлектрических сил // Изв. РАН. Теория и системы управления. 2023. № 6. С. 93–109.