УДК 681.5

ПАРАМЕТРИЧЕСКИЙ СИНТЕЗ РОБАСТНОГО ПИД-РЕГУЛЯТОРА ДЛЯ ОБЕСПЕЧЕНИЯ АПЕРИОДИЧЕСКОГО ПЕРЕХОДНОГО ПРОЦЕССА В ИНТЕРВАЛЬНОЙ СИСТЕМЕ УПРАВЛЕНИЯ

Т.А. Езангина

Национальный исследовательский Томский политехнический университет Россия, 634050, Томск, пр. Ленина, 30 E-mail: saga@tpu.ru

Ключевые слова: интервальная система управления, модальный синтез регулятора, максимальная степень доминирования.

Аннотация: В статье рассмотрена проблема определения настроек линейного регулятора, обеспечивающего в системе с интервальными параметрами апериодические переходные процессы. Для ее решения предложен декомпозиционный подход на основе разделения характеристического полинома системы на доминирующий, задающий доминирующий вещественный полюс, и свободный, определяющий расположение остальных полюсов. Для размещения свободных полюсов на максимальном удалении от доминирующего сформулированы условия максимальной степени доминирования. Разработана методика модального синтеза линейных регуляторов. Применение методики рассмотрено на числовом примере.

1. Введение

Существует большой класс систем управления, в которых переходные процессы должны быть апериодическими или близкими к ним. При наличии в объекте управления интервальных параметров каждый полюс системы будет мигрировать по комплексной плоскости, образуя область своей локализации. Очевидно, что доминирующий вещественный корень, обеспечивающий апериодический переходный процесс, тоже будет мигрировать, но в отрезке $[\alpha_1, \alpha_2]$, расположенном на действительной оси (рис. 1). Для сохранения апериодического вида переходных процессов необходимо, чтобы этот отрезок оставался доминирующим при любых значениях интервальных параметров, а все остальные корни располагались в области Γ на определенном расстоянии от отрезка $[\alpha_1, \alpha_2]$. Решение данной задачи приведены в работах [1]-[5].

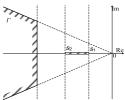


Рис. 1. Области локализации доминирующего и свободных корней.

2. Постановка задачи

Пусть задан ИХП вида

(1)
$$A(s,k_r) = \sum_{i=0}^n a_i(k_r) s^i, r = \overline{0,m}, m \ge 3,$$

 $a_{i\min}(k_r) \le a_i(k_r) \le a_{i\max}(k_r)$ – интервальные коэффициенты, образующие многогранник с 2^{n+1} вершинами V, k_r – настройки регулятора, которые линейно входят ИХП. Необходимо выбрать такие значения k_r , которые располагали бы доминирующий вещественный полюс в заданном отрезке, свободные полюса – в области Γ и обеспечивали при этом максимальную степень робастного доминирования $\gamma = [\eta, \alpha_2]$.

3. Алгебраические соотношения декомпозиционного подхода

Доминирующий полинома имеет вид

(2)
$$Q(s) = s + [\alpha], \alpha > 0, \alpha_1 < \alpha < \alpha_2.$$

Разделим ИХП (1) на полином (2) и в результате получим свободный полином P(s) и остаток от деления R. Таким образом, исходный характеристический полином (1) можно представить в виде

$$A(s) = Q(s)P(s) + R = s + [\alpha].$$

Свободный полинома P(s) имеет вид:

(3)
$$P(s) = \sum_{i=0}^{n-1} [p_i] s^i, \underline{p_i} < p_i < \overline{p_i}$$

При этом в $(3)\underline{p_i} = \underline{a_j}\underline{\alpha^{j-i-1}}$ если $(-1)^{j-i-1} = 1$ или $\underline{p_i} = \overline{a_j}\overline{\alpha^{j-i-1}}$ $(-1)^{j-i-1} = -1$ и наоборот для $\overline{p_i}$.

Выражение для остатка *R* имеет вид

(4)
$$R = \sum_{i=0}^{n} [a_i] [\alpha]^i (-1)^i,$$

где n — степень характеристического полинома (1) замкнутой системы.

4. Основные соотношения для определения зависимых настроек регулятора

В [6] установлено, что проверочные вершины $V_1(\underline{a_0}\overline{a_1}\underline{a_2}\dots)$ и $V_2(\overline{a_0}\underline{a_1}\overline{a_2}\dots)$ задают соответственно правую α_1 и левую α_2 границы доминирующего вещественного корня (рис. 1). Отсюда следует, что (4) при $s=\alpha_1$ определяется выражением

(5)
$$R_1 = \sum_{i=0}^n [a_i] [\alpha]^i (-1)^i$$
, где $a_i = \underline{a_i}$ для $i = 0,2,4$ и $a_i = \overline{a_i}$ для $i = 1,3,5$

При $s = \alpha_2$ имеем

(6)
$$R_2 = \sum_{i=0}^n [a_i] [\alpha]^i (-1)^i$$
, где $a_i = \overline{a_i}$ для $i = 0,2,4$ и $a_i = \underline{a_i}$ для $i = 1,3,5$

На основании (5)-(6) из условия составляется система уравнений для вершин V_1 и V_2 вида

(7)
$$\begin{cases} R_1(\vec{k}) = a_0(\vec{k}) - \alpha_1 p_0(\vec{k}) = 0; \\ R_2(\vec{k}) = a_0(\vec{k}) - \alpha_2 p_0(\vec{k}) = 0. \end{cases}$$

Выражаем из каждого уравнения системы (7) параметр k_0

(8)
$$\begin{cases} k_0(k_1, k_2) = F_1(k_1, k_2); \\ k_0(k_1, k_2) = F_2(k_1, k_2). \end{cases}$$

Приравнивая полученные в (8) выражения, получим зависимость $k_2(k_1)$

(9)
$$k_2(k_1) = F_1(k_1) - F_2(k_1)$$

5. Основные соотношения для определения свободных настроек регулятора и максимальной степени доминирования

Так как степень робастного доминирования вещественного корня определяется длиной отрезка $\gamma = [\eta, \alpha_2]$, то задачу максимизации степени доминирования предлагается решать на основе максимизации показателя η . Для этого предлагается применить к интервальному свободному полиному робастное расширение [7] и максимизировать его минимальную степень устойчивости. При этом необходимо определенные вершины-кандидаты на минимальную устойчивости, полученные в [6]. Таким образом, предлагаемый подход основан на решении максиминной задачи: определение робастных настроек линейного регулятора, при которых достигается максимум минимальной степени устойчивости интервального свободного полинома в вершинах-кандидатах.

Вершинный свободный полином имеет вид:

(10)
$$P(s, k_1)_{V_q} = \sum_{i=0}^n p_i(k_1)_{V_q} s^i, q \in \overline{1, V},$$

где q — номер вершины.

Подставим в (10) $s = \eta + j\beta$ и получим полином

(11)
$$P(\eta, \beta, k_1)_{V_q} = \sum_{i=0}^n p_i(k_1)_{V_q} (\eta + j\beta)^i, q \in \overline{1, V}.$$

Разделим полином (11) на вещественную и мнимую части и составим систему уравнений вида

(12)
$$\begin{cases} \operatorname{Re}P(\eta, \beta, k_1)_{V_q} = 0; \\ \operatorname{Im}P(\eta, \beta, k_1)_{V_q} = 0; \\ \frac{\partial \operatorname{Re}P(\eta, \beta, k_1)_{V_q}}{\eta} = 0. \end{cases}$$

Решив систему (12) V раз, получим V наборов значений параметров регулятора и соответствующие им значения $\eta_{V_{\max}}$ максимальной степени устойчивости системы в каждой из вершин-кандидатов. Необходимо выбрать вершину $q, q \in \overline{1, V}$ с наименьшей максимальной степенью устойчивости $\eta_{q \min}$ и полученное для нее значение параметра регулятора $k_1 = k_1^*$

Далее при $k_1 = {k_1}^*$ следует во всех остальных вершинах-кандидатах найти степени устойчивости $\eta_z(k_1^*), z \in \overline{1, V}, z \neq q$. Для этого предлагается решить V уравнений (13) $(ReP(\eta, \beta)|k_1 = k^* = 0;$

(13)
$$\begin{cases} \operatorname{Re}P(\eta,\beta)|k_1 = k^* = 0; \\ \operatorname{Im}P(\eta,\beta)|k_1 = k^* = 0. \end{cases}$$

и сравнить найденные значения $\eta_z({k_1}^*)$ с $\eta_{q\min}$. Если $\eta_z({k_1}^*) > \eta_{q\min}$, то задача решена. Иначе необходимо продолжить исследования и составить систему вида (12) для всех пар вершин-кандидатов многогранника P_a . Такая система уравнений для пары вершин с индексами і и ј будет иметь вид:

(14)
$$\begin{cases} \operatorname{Re}P(\eta, \beta_{1}, k_{1})_{V_{i}} = 0; \\ \operatorname{Im}P(\eta, \beta_{1}, k_{1})_{V_{i}} = 0; \\ \operatorname{Re}P(\eta, \beta_{1}, k_{1})_{V_{j}} = 0; \\ \operatorname{Im}P(\eta, \beta_{1}, k_{1})_{V_{j}} = 0. \end{cases}$$

Необходимо решить систему (14) C_2^V раз (число сочетаний из V по 2) и из всех решений выбрать то, которое дает минимальное значение η_{\min} .

6. Методика синтеза ПИД-регулятора

Разработана методика параметрического синтеза регулятора, обеспечивающий максимальную степень робастного доминирования. Она состоит из следующих этапов.

- 1. На основании заданного отрезка $\alpha \in [\alpha_1, \alpha_2]$ и выражений (2), (3), (4) сформировать интервальный доминирующий полином Q(s), интервальный свободный полином P(s) и интервальный остаток R.
- 2. На основании (10), (11) получить зависимости $k_0(k_1, k_2)$ и $k_2(k_1)$.
- 3. На основании [6] выбрать вершины-кандидаты на минимальную степень устойчивости интервального свободного полинома P(s).
- 4. На основании условий (12)-(14), найти максимум минимальной степени устойчивости η_{\max} и соответствующее значение параметра регулятора k_1 .
- 5. На основании зависимостей, полученных в п. 2 находятся значения параметров k_2 и k_0 .

7. Числовой пример

На основе разработанной методики проведем параметрический синтез робастного ПИД-регулятора системы управления движением необитаемого подводного аппарата [8]. Необходимо определить настройки регулятора, обеспечивающие максимальную степень доминирования заданного вещественного полюса $\alpha \in [0.9,2]$.

В результате определены настройки ПИД-регулятора $k_0 = 0.02$, $k_1 = 0.006$, $k_2 = 0.000075$, $\gamma = 28.5$. Для подтверждения результатов построены области локализации корней полинома (рис. 2a) и переходные процессы системы в вершинах, определяющих границы отрезка вещественного полюса системы.

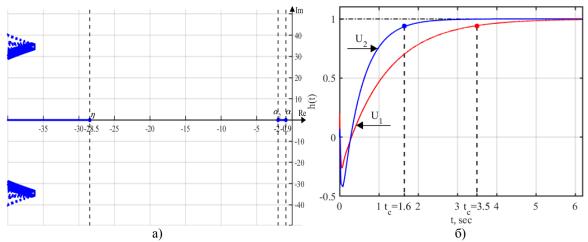


Рис. 2. Графики: а) областей локализации корней, б) переходные процессы.

8. Заключение

Решена задача параметрического синтеза линейного регулятора, обеспечивающего в ИСУ апериодический характер переходных процессов. В основу разработанного подхода положена процедура разделения полинома на доминирующий и свободный. Для размещения свободных корней полинома на максимально возможном удалении от мнимой оси разработана методика параметрического синтеза линейных регуляторов на основе метода нелинейного программирования. Они обеспечивают максимальную степень доминирования корней полинома и гарантируют апериодический вид переходных процессов в системе.

Работа выполнена при финансовой поддержке гранта РНФ № 24-29-00645.

Список литературы

- 1. Fiser J., Skopec P., Zítek P, Vyhlídal T. Knobloch J. Dominant root locus in state estimator design for material flow processes: A case study of hot strip rolling // ISA Transactions. 2019. vol. 68, P. 381-401.
- Glumov V.M., Puchkov A.M., Seleznev A.E. Design and analysis of lateral motion control algorithms for an unmanned aerial vehicle with two control surfaces // Automation and Remote Control. 2017. Vol. 78, No. 5. P. 924-935.
- 3. Mandić P.D., Šekara T.B., Lazarević M.P., Bošković M. Dominant pole placement with fractional order PID controllers: D-decomposition approach // ISA Transactions. 2017. Vol. 67. P. 76-87.
- Meerov M.V., Jury E.I. On aperiodicity robustness // International Journal of Control. 1998. Vol. 70, No. 2. P. 193-201.
- 5. I.E.K. Mekki, M. Bouhamida and M. Saad. Robust control of a chemical multivariable system in the presence of strong uncertainties in the model parameters // International Review of Automatic Control. 2018. Vol. 11, No. 4. P.166-173.
- 6. Gayvoronskiy S.A., Ezangina T., Pushkarev M., Khozhaev I. Determination of vertex polynomials to analyse robust stability of control systems with interval parameters // IET Control Theory and Applications. 2020. Vol. 14. No. 18. P. 2825-2835.
- 7. Татаринов А.В., Цирлин А.М. Задачи математического программирования, содержащие комплексные переменные, и предельная степень устойчивости линейных динамических систем // Известия РАН. Теория и системы управления. 1995. № 1. С. 28-33.
- 8. Khozhaev I.V., Ezangina T.A., Gayvoronskiy S.A., Sukhodoev M.S. Multivariable control system of vertical motion for an unmanned underwater vehicle with interval parameters. // International Journal of Mechanical Engineering and Robotics Research. 2017. Vol. 7, No. 6. P. 679-683.