АНАЛИЗ РОБАСТНОЙ СИСТЕМЫ УПРАВЛЕНИЯ ЭЛЕКТРОПРИВОДА С ИСПОЛЬЗОВАНИЕМ КОРНЕВЫХ ПОРТРЕТОВ

А.А. Несенчук

Объединенный институт проблем информатики НАН Беларуси Беларусь, 220012, Минск, ул. Сурганова, 6 E-mail: anes@newman.bas-net.by

Ключевые слова: система автоматического управления, электропривод, неопределенность, робастный дискретный регулятор, анализ, функция параметра корневого годографа.

Аннотация: Рассматривается задача исследования устойчивости системы автоматического управления электропривода с неопределенностью интервального характера и робастным дискретным регулятором, синтезированным приближенным методом малого параметра. С целью проведения исследования используется корневой подход, основанный на построении диаграммы распределения функции параметра корневого годографа вдоль границы устойчивости динамической системы, что позволяет получить полное представление о динамике интервальной системы, в том числе о ее поведении на границе устойчивости.

1. Введение

Электроприводы являются основным элементом средств автоматизации в промышленности. Поэтому, важное значение имеет усовершенствование систем автоматического управления этими мехатронными устройствами, придание им робастных свойств [1], что позволит повысить качество их функционирования, С целью анализа робастной устойчивости подобных систем может успешно использоваться корневой подход [2,3], основанный на построении корневого портрета и исследовании поведения корней характеристического полинома системы.

В работе [4] подчеркивается, что полиномиальное описание динамики систем во многих случаях является наиболее естественным, а полиномиальные модели дают возможность продемонстрировать два особо важных свойства систем: динамику (поведение) нулей и полюсов в транспарентной (прозрачной) форме. Метод корневого годографа является графоаналитическим, а непосредственно корневой годограф позволяет получить качественную информацию о динамических показателях качества мехатронных объектов.

Данная статья посвящена вопросу использования корневого подхода для анализа робастной устойчивости дискретной системы управления электропривода с робастным регулятором, синтезированным приближенным методом малого параметра [5]. Задача синтеза такой системы с интервальной неопределенностью объекта рассматривается в работе [6]. Здесь параметризация дискретных ПИ-регуляторов в контурах управления током и скоростью производится посредством дискретного робастного синтеза, основанного на *z*-преобразовании, разделении движения в контурах на быструю и медленную составляющие и использовании методов малого параметра и временного

масштабирования [5]. Для перехода из дискретной области в непрерывную применяется специальное преобразование [7]. В данной работе для исследования синтезированной системы используется диаграмма распределения функции параметра корневого годографа на границе устойчивости интервальной системы [8].

2. Постановка задачи. Динамика исследуемой дискретной системы

Структурная схема исследуемой системы управления электропривода представлена на рис. 1 [6]. Она включает внутренний «быстрый» контур управления током и внешний «медленный» контур управления скоростью ω .

Рис. 1. Структурная схема системы управления электропривода.

Искомые параметры регулятора скорости, c_0 и c_1 , вычислены, исходя из желаемых значений корней $z_{3,4} = \sigma_s \pm j v_s$ характеристического полинома $N_{S_0}(z)$ системы (1) второй степени, полученного при условии равенства единице передаточной функции «быстрого» контура тока, $W_C = 1$, в котором процессы протекают значительно быстрее в сравнении с процессами в контуре скорости. В результате характеристический полином системы приобретает следующий вид [6]:

(1) $N_{S_0}(z) = (1-z)^2 + (c_1(1-z) + c_0T_C)b_p,$

где c_1 и c_0 – параметры ПИ-регулятора (пропорционально-интегрального регулятора), которые определяются при синтезе; T_C – период расчета (период широтно-импульсной модуляции); b_P – изменяющийся параметр объекта, $b_p \in [\underline{b}_p, \overline{b}_p]$.

С целью вычисления корней $z_{3,4}$ использован метод малого параметра [5] и введен малый параметр ε , что означает «малость» корней $z_{3,4}$ характеристического полинома контура скорости в сравнении с корнями $z_{1,2}$ характеристического полинома контура тока. Значение малого параметра определялось в пределах $0 < \varepsilon < 0.5$.

С использованием имитационного моделирования построены графики переходных процессов в системе, и продемонстрировано, что применение метода малого параметра для синтеза управления в двухконтурной дискретной системе управления электропривода позволяет обеспечить робастность системы [6]. Задача состоит в исследовании (проверке) результатов синтеза с использованием корневого подхода [2, 3], основывающегося на применении точных методов синтеза и анализа.

3. Исследование устойчивости интервальной системы с использованием корневых портретов

Для применения корневого подхода с целью исследования результатов синтеза дискретного регулятора было выполнено преобразование комплексного переменного z в комплексное переменное q: q = (z - 1) [6, 7]. Тогда, с учетом контура управления током, характеристический полином системы определен в виде [6]:

 $N_s(q) = q^4 + a_1 q^3 + (a_{20} + B_{2h})q^2 + Ba_3 q + Ba_4,$ (2)

где $a_1, a_{20}, a_{2b}, a_3, a_4$ – коэффициенты; $\underline{b}_p = b_{p_0}, B \in [\underline{B}, \overline{B}], \underline{B} = 1 \ (B = b_p/b_{p_0}).$

переменные q и s могут быть приблизительно Поскольку приняты пропорциональными [6, 7], $q \approx T_{CS}$, полином (2) представим в виде $P(s) = s^4 + a_1 s^3 + a_2 s^2 + a_3 s + a_4,$

(3) где $a_i \in [\underline{a}_i, \overline{a}_i], j = 1, ..., 4.$

С целью исследования используется диаграмма распределения функции параметра свободного корневого годографа интервальной динамической системы вдоль границы устойчивости [8]. Коэффициент а₄ полинома (3) принимается в качестве параметра корневого годографа.

Интервал изменения коэффициента B усиления объекта принят равным $B \in [B, \overline{B}] \in$ [1,10].

Рассмотрены два следующих варианта вычислений.

Вариант 1: $\varepsilon = 0.05$; параметры регуляторов: $c_0 = 0.156 \cdot 10 - 3$, $c_1 = 0.0253$.

Вариант 2: $\varepsilon = 0.25$; параметры регуляторов: $c_0 = 0.0039$, $c_1 = 0.1253$.

Для каждого из вариантов определены номинальные значения и интервалы изменения коэффициентов полинома (3).

Вначале рассмотрим вариант 1.

По варианту 1 вычислены следующие значения границ интервалов изменения (вариации) коэффициентов характеристического полинома системы (3) с учетом интервального характера вариации коэффициента усиления В объекта:

 $a_2 \in [a_2, \overline{a}_2] = [0,0717, 0,1572];$ $a_3 \in [a_3, \overline{a}_3] =$ $a_0 = 1; a_1 = 0,499;$ [0,0016,0,016];

 $a_4 = [\underline{a}_4, \overline{a}_4] = [9.69 \cdot e - 06, 96.9e - 06]$

В соответствии с корневым методом, описанным в [8], получена диаграмма распределения значений функции параметра $f(\omega)$,

 $f(\omega) = -\omega^4 + a_2\omega^2 = a_4,$ (4)

вдоль границы устойчивости для семейства (3), которая эскизно показана на рис. 2. На рис. 2 бесконечная область D_{ω}^{P} представляет собой область, в которой ветви корневого годографа семейства (3) потенциально могут пересекать границу асимптотической устойчивости системы, а именно, когда коэффициенты a1 и a3 выражения (3) изменяются в пределах бесконечных интервалов значений. Данная область состоит из трех подобластей (областей): D_{ω}^{+} – возрастания параметра a_4 корневого годографа, $D_{\omega}^{\ e}$ – экстремальных значений параметра (область экстремумов) и D_{ω}^{-} - убывания значений параметра. Эти области формируются с использованием таких уравнений, как уравнение параметра и уравнение корневого годографа [8].

 D_{ω}^{+} граница устойчивости пересекается пределах области только В положительными ветвями семейства корневых годографов системы, и семейство начальных точек (полюсов) системы полностью располагается в левой полуплоскости комплексной плоскости корней s. Функция параметра имеет возрастающий характер. В области D_0^e для определенной части семейства значения параметра вдоль мнимой оси уменьшаются с увеличением координаты *iv*, т.е. имеются участки возрастания и убывания функции параметра. В пределах области D_{ω}^{-} функция параметра для всего семейства уменьшается с увеличением координат *iv*, т.е. имеет убывающий характер.

Рис. 2. Диаграмма распределения функции параметра вдоль границы устойчивости (вариант 1).

Пересечение границы устойчивости семейством корневых годографов системы в области [0, x'] показывает, что все семейство полюсов системы располагается в левой полуплоскости. Пересечение в области [x', x"] показывает, что семейство полюсов частично располагается в левой полуплоскости, а частично – в правой полуплоскости, т.е. полюсы корневого портрета системы мигрируют из левой в правую полуплоскость с увеличением координаты *iv*. Пересечение в области [x", - ∞] показывает, что граница устойчивости пересекается только отрицательными ветвями портрета системы, и это означает, что все полюсы системы мигрировали в правую полуплоскость. Область, ограниченная минорантой и мажорантой функции параметра (4) (на рис. 2 закрашена серым цветом) и расположенная ниже координаты *x*", показывает характер распределения значений параметра корневого годографа вдоль границы устойчивости для всего интервального семейства в целом.

На диаграмме также присутствует так называемая реальная область пересечений D_{ω}^{R} (рис. 2), которая формируется при пересечении границы устойчивости *iv* ветвями корневого портрета заданным (реальным) интервальным семейством. Установление характера локализации реальной области пересечений относительно областей D_{ω}^{+} , D_{ω}^{e} и D_{ω}^{-} позволяет не только исследовать, выполнять анализ и синтез интервального семейства, но также получить представление о конфигурации корневого годографа всего интервального семейства в целом.

Очевидно, что область пересечений D_{ω}^{R} на рис. 2 расположена в пределах D_{ω}^{+} , и, согласно [8], устойчивость интервального семейства может быть проверена по условию (5) $\overline{a}_{4} < a_{4}(a)$,

где $\underline{a}_4(a)$ – минимальное значение коэффициента a_4 в точке a (рис. 2).

В рассматриваемом случае вычислено значение $\underline{a}_4(a) = 221 e - 06$. Это означает, что для варианта 1 условие устойчивости (5) семейства (3) удовлетворяется.

В [8] также доказано, что в случае расположения реальной области пересечений D_{ω}^{R} в пределах области возрастания D_{ω}^{+} устойчивость системы может быть установлена путем проверки на устойчивость только одного следующего доминирующего полинома семейства:

(6)
$$s^4 + \overline{a}_1 s^3 + a_2 s^2 + a_3 s + \overline{a}_4 = h(s)$$

В нашем случае полином (6) принимает следующий вид:

(7) $s^4 + 0,499s^3 + 0,0717s^2 + 0,0016s + a_4 = h_1(s); \overline{a}_4 = 96,9 \cdot 10^{-6}.$ Проверка полинома (7) подтверждает устойчивость системы.

Аналогичное исследование проведено по варианту 2, когда $\varepsilon = 0.25$. В этом случае для проверки устойчивости используется уже два доминирующих полинома [8]. Для варианта 2 реальная область пересечений D_{ω}^{R} частично перекрывает обе области D_{ω}^{+} и D_{ω}^{e} , а также и область [x', x'']. Это означает, что определенная часть полюсов корневого годографа системы располагается в правой полуплоскости плоскости корней, что свидетельствует о неустойчивости рассматриваемого семейства в целом.

4. Заключение

В работе выполнено исследование устойчивости системы автоматического управления электропривода с дискретным робастным регулятором, синтезированным с применением приближенного метода малого параметра. С целью проведения исследования использована диаграмма распределения функции параметра корневого годографа характеристического уравнения системы с интервальной неопределенностью на границе устойчивости. Диаграмма позволяет не только установить устойчивость системы, но также определить значения параметра, при которых система сохраняет устойчивость, выявить наличие или отсутствие устойчивых полиномов в семействе характеристических полиномов системы.

Результаты исследования также показывают, что уменьшение принятого значения малого параметра приводит к расширению интервала изменения параметра *B* объекта при сохранении свойства робастной устойчивости системы.

Список литературы

- 1. Поляк Б.Т., Щербаков П.С. Робастная устойчивость и управление. М.: Наука, 2002. 303 с.
- 2. Дорф Р., Бишоп Р. Современные системы управления. М.: Лаборатория базовых знаний, 2002. 832 с.
- 3. Несенчук А.А. Анализ и синтез робастных динамических систем на основе корневого подхода. Мн.: ОИПИ НАН Беларуси, 2005. 234 с.
- 4. Kučera V. Polynomial control: past, present, and future // International Journal of Robust and Nonlinear Control. 2007. Vol. 17, No. 8. P. 682-705.
- Chow J.N., Kokotovic P.V. A Decomposition of Near-Optimum Regulators for Systems with Slow and Fast Modes // IEEE Trans. on Autom. Contr. 1976. Vol. AC-21, No. 5. P. 701-705.
- Opeiko O.F., Nesenchuk A.A. Discrete Robust Control Synthesis and Analysis Using the Free Root Locus Portraits for Electric Drive // Proceedings of the 3rd IEEE International Conference on Electrical, Computer and Energy Technologies. Cape Town, South Africa, 2023. Aksaray: Aksaray University, 2023. P. 873-878.
- 7. Jury E.I. Inners and Stability of Dynamic Systems. New York-London-Sydney-Toronto: John Willey & Sons, 1974. 308 p.
- Nesenchuk A.A. Investigation of behavior and synthesis of interval dynamic systems' characteristic polynomials based on the root locus portrait parameter function // Proceedings of the 60th American Control Conference. Milwaukee, USA, 2018. Milwaukee. 2018. P. 2041-2046.