УДК 531/534, 534.1, 534.5, 517.9

ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ НАГРУЖЕННОЙ ВРАЩАЮЩЕЙСЯ ШИНЫ

686

И.Ф. Кожевников

Федеральный исследовательский центр «Информатика и Управление» Российской академии наук Россия, 119333, Москва, ул. Вавилова, 40

E-mail: kogevnik@ccas.ru

Ключевые слова: радиальная шина, аналитическая модель, вынужденные колебания.

Аннотация: Исследуются вынужденные малые колебания нагруженной вращающейся шины в окрестности стационарного режима качения. Из-за вибраций колесного диска, внешние силы и крутящий момент, приложенные к нему, координаты центра масс, компоненты реакции в пятне контакта и натяжение бандажа зависят от времени. В случае вынужденных колебаний собственные формы вычисляются аналитически. При различных возмущающих частотах в горизонтальном и вертикальном направлениях из спектра выделяются две собственные формы, представляющие собой бегущие волны в направлении, противоположном вращению шины, которые накладываются одна на другую.

1. Модель колеса с радиальной шиной

Модель радиальной шины, позволяющая аналитически проанализировать динамические эффекты, возникающие при качении, была предложена в [1–4]. Предполагается, что механическая система состоит из двух частей: деформируемой и недеформируемой. Недеформируемой частью колеса является диск, который представляется абсолютно твердым телом. Деформируемой частью колеса является шина, поверхность которой состоит из гибкой ленты (бандажа), контактирующей с опорной поверхностью, и двух боковин, соединяющих бандаж с диском колеса. При деформациях бандажа, который моделируется в недеформированном состоянии круговым цилиндром радиуса r и высоты 2l, рассматриваются нелинейные условия нерастяжимости корда. Боковые поверхности, моделируемые в недеформированном состоянии частями двух торов, тоже армированы и представляют собой мембраны. Помимо этого, предполагается, что они снабжены материалом, который описывается согласно модели несжимаемой резины Муни-Ривлина.

Введем неподвижную систему координат $OX_1X_2X_3$. Бандаж шины контактирует с опорной плоскостью OX_1X_2 . Начало подвижной системы координат $Cx_1x_2x_3$ поместим в центр масс диска точку C. Обозначим через \mathbf{l}_i орты осей OX_i , а через \mathbf{e}_i орты осей Cx_i . Положение бандажа определяется двумя поворотами на углы β_0, θ относительно осей OX_3 и Cx_2 ($\Gamma_3(\beta_0)$, $\Gamma_2(\vartheta)$ – операторы поворотов):

$$\mathbf{r}_{3}(\varphi,\xi,t) = \sum_{i=1}^{3} X_{i} \mathbf{l}_{i} + \Gamma_{3}(\beta_{0}) \Gamma_{2}(\vartheta) \left(r \mathbf{e}_{1} + l\xi \mathbf{e}_{2} + r \sum_{i=1}^{3} U_{i}(\varphi,\xi,t) \mathbf{e}_{i} \right),$$

где $\vartheta = \theta + \varphi$, параметр $\xi \in [-1;1]$, при этом значение параметра $\xi = 1$ ($\xi = -1$) соответствует линии соединения бандажа с первой (второй) боковиной, значение $\xi = 0$ соответствует срединной линии (СЛ) бандажа l_0 ; $rU_i(\varphi, \xi, t)$ – координаты вектора перемещения точки бандажа в подвижной цилиндрической системе координат. Используя нелинейные условия нерастяжимости волокон, армирующих бандаж, получаются следующие соотношения

 $U_1\!=\!u(\varphi,t), \quad U_2\!=\!w(t), \quad U_3\!=\!-v(\varphi,t), \quad 2(u\!+\!v')\!+\!(u\!+\!v')^2\!+\!(v\!-\!u')^2\!=\!0,$

выражающие зависимость функций U_k от радиальной ru, касательной rv и боковой rw компонент вектора перемещений СЛ l_0 . Таким образом, круговой цилиндр (недеформированное состояние) трансформируется в цилиндрическую поверхность (деформированное состояние) с образующей, заданной плоской нерастяжимой деформированной СЛ l_0 , и семейством ортогональных ей прямых.

Область контакта бандажа с опорной плоскостью OX_1X_2 представляется прямоугольником постоянной ширины 2l и переменной длины, определяемой двумя функциями $\varphi_1(t), \varphi_2(t)$. Не ограничивая общности, можно предположить, что СЛ l_0 совпадает с осью OX_1 (это означает, что угол $\beta_0 = 0$). Таким образом, можно определить перемещения точек СЛ l_0 в зоне контакта $L_1 = [\varphi_1(t), \varphi_2(t)]$. Будем также считать, что $X_2 = 0$ и, следовательно, w = 0, что означает, что центр масс диска не смещается вбок. Пусть колесо катится без проскальзывания и без подпрыгивания. Применим вариационный принцип Гамильтона-Остроградского

$$\int_{t_1}^{t_2} (\delta T + \delta A) dt = 0, \quad \delta A = \delta A_F + \delta A_P + \delta N_1 + \delta N_3 + \delta N_6,$$

$$\delta N_6 = \int_{L_2} \lambda(\varphi, t) \left((1 + u + v')(\delta u + \delta v') + (u' - v)(\delta u' - \delta v) \right) d\varphi, \quad L_2 = [\varphi_2(t), 2\pi + \varphi_1(t)],$$

где кинетическая энергия колеса Т представляет собой сумму кинетической энергии абсолютно жесткого диска и кинетической энергии деформированной шины. Вся масса шины сосредоточена в СЛ l_0 с линейной плотностью ρ . Работа сил δA на возможных перемещениях имеет сложную структуру. Здесь δA_F – работа продольной силы, вертикальной нагрузки и крутящего момента, приложенных к диску колеса, работа δA_P – работа потенциальных сил (работа давления на возможных перемещениях и вариация потенциальной энергии растяжения резины), работы δN_1 , δN_3 , δN_6 – работы реакций связей (движение без проскальзывания, без подпрыгивания в зоне контакта, условие нерастяжимости СЛ l_0). Множитель Лагранжа $\lambda = \lambda(\varphi, t)$ определяет натяжение СЛ l_0 . В результате применения вариационного принципа получается система четырнадцати уравнений движения, которая имеет следующую структуру: три уравнения Лагранжа второго рода с неопределенными множителями (особенность уравнений – наличие интегральных членов от функций u, v и их производных), четыре уравнения движения в частных производных, три уравнения связей и четыре динамических граничных условия. При нахождении и, v также необходимо учесть кинематические граничные условия.

2. Вынужденные колебания вращающейся шины

Рассматривается стационарный режим качения нагруженной шины и предполагается, что колесо вращается с постоянной угловой скоростью Ω . Перейдем от Лагранжева описания к Эйлерову $\alpha = \varphi + \Omega t - \pi/2$. Тогда границы зоны контакта определяются двумя константами $\alpha_k^\circ = \varphi_k^\circ(t) + \Omega t - \frac{\pi}{2} = \text{const}, \dot{\varphi}_k^\circ(t) = -\Omega$. Далее рассматривается проблема колебаний шины в окрестности стационарного режима качения. В стационарном режиме к диску колеса прикладываются внешние силы и момент, которые вызывают смещения диска с очень малой амплитудой по горизонтали $X_{1\text{vib}}$ и вертикали $X_{3\text{vib}}$ за счет деформаций шины. В связи с этим появляются радиальная rU_{vib} и касательная rV_{vib} компоненты вектора перемещений точек СЛ l_0 , связанные с колебаниями (рис.1). Представим функции, определяющие колебания диска, форму деформированной СЛ l_0 , множитель Лагранжа и зону контакта, в следующем виде

Рис. 1. Моделирование вынужденных колебаний

$$\begin{split} X_1(t) &= r \mathcal{Q}t + \Delta X_1 + X_{1\,\mathrm{vib}}(t), \quad X_3(t) = X_3 + X_{3\,\mathrm{vib}}(t), \quad u(\varphi, t) = U(\alpha) + U_{\mathrm{vib}}(\alpha, t), \\ v(\varphi, t) &= V(\alpha) + V_{\mathrm{vib}}(\alpha, t), \quad \lambda(\varphi, t) = \lambda^{\circ}(\alpha) + \lambda_{\mathrm{vib}}(\alpha, t), \quad \alpha_k(t) = \alpha_k^{\circ} + \alpha_{k\,\mathrm{vib}}(t). \end{split}$$

Величины ΔX_1 , X_3 , $U(\alpha)$, $V(\alpha)$, $\lambda^{\circ}(\alpha)$, α_k° описывают стационарный режим качения, а величины $X_{1 \text{ vib}}(t)$, $X_{3 \text{ vib}}(t)$, $U_{\text{vib}}(\alpha, t)$, $V_{\text{vib}}(\alpha, t)$, $\lambda_{\text{vib}}(\alpha, t)$, $\alpha_{k \text{ vib}}(t)$ являются динамическими компонентами, описывающими колебания шины в окрестности стационарного режима. Теперь необходимо написать уравнения движения. Подставляя вышеперечисленные соотношения в эти уравнения, можно получить две подсистемы: одна описывает стационарный режим, а вторая описывает колебания. Будем изучать только подсистему, описывающую колебания:

$$(1) \begin{array}{l} -2\rho r^{3} \Omega \dot{U}_{\text{vib}}' + 2\rho r^{3} \Omega \dot{V}_{\text{vib}} - \rho r^{3} \ddot{U}_{\text{vib}} + \rho r^{3} \Omega^{2} (U_{\text{vib}} + V_{\text{vib}}') + (n_{11} - n_{0}) U_{\text{vib}}'' - n_{01} U_{\text{vib}} + \\ + (m_{20} - m_{21} + n_{0}) V_{\text{vib}}' + \lambda_{\text{vib}} = -\rho r^{2} (\ddot{X}_{1 \text{ vib}} \sin \alpha + \ddot{X}_{3 \text{ vib}} \cos \alpha), \quad \alpha \in L_{2}, \\ -2\rho r^{3} \Omega \dot{V}_{\text{vib}}' - 2\rho r^{3} \Omega \dot{U}_{\text{vib}} - \rho r^{3} \Omega^{2} (V_{\text{vib}}'' + U_{\text{vib}}') + n_{12} V_{\text{vib}}'' + (n_{0} - n_{02}) V_{\text{vib}} + \\ + (m_{02} - m_{12} - n_{0}) U_{\text{vib}}' - \lambda_{\text{vib}}' = -\rho r^{2} (\ddot{X}_{1 \text{ vib}} \cos \alpha - \ddot{X}_{3 \text{ vib}} \sin \alpha), \quad \alpha \in L_{2}, \\ U_{\text{vib}} = -V_{\text{vib}}', \quad \alpha \in L_{1}, L_{2}, \\ r U_{\text{vib}} = X_{1 \text{ vib}} \sin \alpha + X_{3 \text{ vib}} \cos \alpha, \quad r V_{\text{vib}} = X_{1 \text{ vib}} \cos \alpha - X_{3 \text{ vib}} \sin \alpha, \quad \alpha \in L_{1}, \\ [U_{\text{vib}}]_{k} = [V_{\text{vib}}]_{k} = 0, \quad k = 1, 2. \end{array}$$

Дифференцируя обе части первого уравнения системы (1) и складывая его со вторым уравнением, используя линеаризованное условие нерастяжимости СЛ l_0 (третье уравнение), мы получаем неоднородное дифференциальное уравнение в частных производных четвертого порядка

(2)
$$\rho r^{3} \ddot{V}_{\text{vib}}'' - \rho r^{3} \ddot{V}_{\text{vib}} + 2\rho r^{3} \Omega \dot{V}_{\text{vib}}^{(3)} + 2\rho r^{3} \Omega \dot{V}_{\text{vib}}' + a_{0} V_{\text{vib}}^{(4)} + a_{1} V_{\text{vib}}'' + a_{2} V_{\text{vib}} = \\ = -2\rho r^{2} (\ddot{X}_{1 \text{ vib}} \cos \alpha - \ddot{X}_{3 \text{ vib}} \sin \alpha),$$

удовлетворяющее граничным условиям

(3)
$$rV_{\rm vib}(\alpha^*) = X_{1\,\rm vib}\cos(\alpha^*) - X_{3\,\rm vib}\sin(\alpha^*), \quad rV_{\rm vib}'(\alpha^*) = -X_{1\,\rm vib}\sin(\alpha^*) - X_{3\,\rm vib}\cos(\alpha^*),$$

где $\alpha^* = \alpha_1^{\circ} + 2\pi$, α_2° , а длина зоны контакта считается постоянной.

Рассмотрим вынужденные колебания с гармоническими возмущающими функциями $X_{1\,\text{vib}} = A_1 e^{i\omega_1 t}$, $X_{3\,\text{vib}} = A_3 e^{i\omega_3 t}$, где A_1 , A_3 , ω_1 , ω_3 – амплитуды и циклические частоты вынуждающих воздействий. Сначала рассмотрим вынужденные колебания с одинаковыми возмущающими частотами $\omega_1 = \omega_3$ в горизонтальном и вертикальном направлениях. Если в уравнении (2) отбросить правую часть, то получится однородное уравнение. Используя метод разделения переменных (метод Фурье), представим решение однородного уравнения в виде $V_{\text{vib}}^{\text{cf}}(\alpha, t) = e^{i\omega t}X(\alpha)$, где $X(\alpha)$ – собственная форма (СФ) колебаний невозмущенной системы, когда диск колеса не колеблется. Подставляя выражение для $V_{\text{vib}}^{\text{cf}}$ в однородное уравнение, получаем обыкновенное дифференциальное уравнение

$$a_0 X^{(4)} + 2\rho r^3 \Omega \omega i X^{(3)} + (a_1 - \rho r^3 \omega^2) X'' + 2\rho r^3 \Omega \omega i X' + (a_2 + \rho r^3 \omega^2) X = 0,$$

общее решение которого разыскивается в виде $X(\alpha) = Ge^{p\alpha}$. Тогда характеристическое уравнение является уравнением четвертого порядка и решается методом Феррари. В результате четыре корня $p_1(\omega, \Omega), p_2(\omega, \Omega), p_3(\omega, \Omega), p_4(\omega, \Omega)$ находятся аналитически. Следовательно, решение $X(\alpha)$ представляется в форме $X(\alpha) = G_1 e^{p_1 \alpha} + G_2 e^{p_2 \alpha} + G_3 e^{p_3 \alpha} + G_4 e^{p_4 \alpha}$. Частное решение уравнения (2) имеет следующий вид

$$V_{\rm vib}^{\rm pi}(\alpha,t) = \left(\frac{A_1\omega_1^2}{r(\omega_1^2 - k)}\cos\alpha - \frac{A_3\omega_1^2}{r(\omega_1^2 - k)}\sin\alpha\right)e^{i\omega_1 t}.$$

Коэффициенты G_n определяются из граничных условий (3), представляющих собой систему линейных алгебраических уравнений. Функция $V_{\rm vib}(\alpha, t) = e^{i\omega t} X^*(\alpha)$ представляется линейной комбинацией действительной $\operatorname{Re}(X^*(\alpha))$ СФ и мнимой $\operatorname{Im}(X^*(\alpha))$ СФ, соответствующих одной и той же частоте, где

$$X^{*}(\alpha) = G_{1}e^{p_{1}\alpha} + G_{2}e^{p_{2}\alpha} + G_{3}e^{p_{3}\alpha} + G_{4}e^{p_{4}\alpha} + \frac{A_{1}\omega^{2}}{r(\omega^{2} - k)}\cos\alpha - \frac{A_{3}\omega^{2}}{r(\omega^{2} - k)}\sin\alpha$$

Наблюдается волна, бегущая в направлении, противоположном вращению шины. Действительные $\operatorname{Re}(X^*(\alpha))$ СФ (сплошная толстая линия) представлены (Input I, $\Delta \alpha = 0.3$ рад, $\Omega = 175$ рад·с⁻¹, $A_1 = A_3$) в окрестности стационарного режима качения (пунктирная линия) на рис.2 (а) для $\nu = \omega/(2\pi) = 115$ Гц и на рис.2 (б) для $\nu = \omega/(2\pi) = 345$ Гц. Амплитуды вынуждающих воздействий на рис.2 (а) и (б) различны. Возмущающая частота 115 Гц близка к собственной частоте (СЧ) 112.78 Гц невозмущенной системы, когда диск колеса не колеблется, а возмущающая частота 345 Гц близка, соответственно, к СЧ 343.71 Гц. Так как возмущающая частота близка к СЧ шины, то шина реагирует на это возмущение, и из спектра выделяется соответствующая СФ. Если $\omega_1 \neq \omega_3$, то общее решение уравнения (2) представляется в форме $V_{\rm vib}(\alpha, t) = e^{i\omega_1 t} X_1^*(\alpha) + e^{i\omega_3 t} X_3^*(\alpha)$, где

Рис. 2. (а) 115, 115 Гц, (б) 345, 345 Гц, (в) 115, 345 Гц, (г) 97, 194 Гц

$$X_{n}^{*}(\alpha) = G_{n1} e^{p_{1}(\omega_{n})\alpha} + G_{n2} e^{p_{2}(\omega_{n})\alpha} + G_{n3} e^{p_{3}(\omega_{n})\alpha} + G_{n4} e^{p_{4}(\omega_{n})\alpha} + \frac{A_{n}\omega_{n}^{2}}{r(\omega_{n}^{2} - k)} \cos\left(\frac{\pi(n-1)}{4} + \alpha\right),$$

 $G_{1n} = G_n(A_1, 0), G_{3n} = G_n(0, A_3).$ Re $X_1^* + \text{Re}X_3^*$ нагруженной вращающейся шины представлено на рис.2 (в) для $\nu_1 = 115$ Гц и $\nu_3 = 345$ Гц. Так как обе частоты возмущающих воздействий близки к СЧ, следовательно, две соответствующие СФ выделяются из спектра и накладываются друг на друга («большие горбы» соответствуют ω_1 , а «рябь» соответствует ω_3). Наблюдается волна, бегущая в направлении, противоположном вращению шины, которая представляет собой суперпозицию двух СФ. Траектория движения точки СЛ l_0 нагруженной вращающейся шины представлена на рис.2 (г) для $\nu_1 = 97$ Гц и $\nu_3 = 194$ Гц.

Список литературы

- 1. Vil'ke V.G., Kozhevnikov I.F. A model of a wheel with a reinforced tyre // Moscow University Mechanics Bulletin. 2004. Vol. 59, Issue 4. P. 1-10.
- 2. Kozhevnikov I.F. The vibrations of a free and loaded tyre // Journal of Applied Mathematics and Mechanics. 2006. Vol. 70, Issue 2. P. 223-228.
- Kozhevnikov I.F. Vibrations of a rolling tyre // Journal of Sound and Vibration. 2012. Vol. 331, No. 7. P. 1669-1685.
- 4. Kozhevnikov I.F. Forced vibrations of a rolling tyre // Wave Motion. 2022. Vol. 114. P. 103007.